omarkamali commited on
Commit
4dc6cff
·
verified ·
1 Parent(s): ca0ba91

Upload all models and assets for co (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +224 -191
  3. models/embeddings/aligned/co_128d.bin +3 -0
  4. models/embeddings/aligned/co_128d.meta.json +1 -0
  5. models/embeddings/aligned/co_128d.projection.npy +3 -0
  6. models/embeddings/aligned/co_128d_metadata.json +8 -0
  7. models/embeddings/aligned/co_32d.bin +3 -0
  8. models/embeddings/aligned/co_32d.meta.json +1 -0
  9. models/embeddings/aligned/co_32d.projection.npy +3 -0
  10. models/embeddings/aligned/co_32d_metadata.json +8 -0
  11. models/embeddings/aligned/co_64d.bin +3 -0
  12. models/embeddings/aligned/co_64d.meta.json +1 -0
  13. models/embeddings/aligned/co_64d.projection.npy +3 -0
  14. models/embeddings/aligned/co_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/co_128d.bin +2 -2
  16. models/embeddings/monolingual/co_128d_metadata.json +1 -1
  17. models/embeddings/monolingual/co_32d.bin +2 -2
  18. models/embeddings/monolingual/co_32d_metadata.json +1 -1
  19. models/embeddings/monolingual/co_64d.bin +2 -2
  20. models/embeddings/monolingual/co_64d_metadata.json +1 -1
  21. models/subword_markov/co_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/co_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/co_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/co_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/co_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/co_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/co_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/co_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/co_2gram_subword.parquet +2 -2
  30. models/subword_ngram/co_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/co_3gram_subword.parquet +2 -2
  32. models/subword_ngram/co_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/co_4gram_subword.parquet +2 -2
  34. models/subword_ngram/co_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/co_5gram_subword.parquet +3 -0
  36. models/subword_ngram/co_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/co_tokenizer_16k.model +2 -2
  38. models/tokenizer/co_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/co_tokenizer_32k.model +2 -2
  40. models/tokenizer/co_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/co_tokenizer_64k.model +2 -2
  42. models/tokenizer/co_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/co_tokenizer_8k.model +2 -2
  44. models/tokenizer/co_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/co_vocabulary.parquet +2 -2
  46. models/vocabulary/co_vocabulary_metadata.json +9 -9
  47. models/word_markov/co_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/co_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/co_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/co_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: co
3
- language_name: CO
4
  language_family: romance_galloitalic
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-romance_galloitalic
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.197
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.8272
30
  - name: vocabulary_size
31
  type: vocab
32
  value: 0
33
  generated: 2026-01-03
34
  ---
35
 
36
- # CO - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **CO** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
- - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
  - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
@@ -80,47 +90,47 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
- | **8k** | 3.418x | 3.42 | 0.0321% | 368,161 |
84
- | **16k** | 3.691x | 3.69 | 0.0346% | 340,883 |
85
- | **32k** | 3.970x | 3.97 | 0.0372% | 316,946 |
86
- | **64k** | 4.197x 🏆 | 4.20 | 0.0394% | 299,775 |
87
 
88
  ### Tokenization Examples
89
 
90
  Below are sample sentences tokenized with each vocabulary size:
91
 
92
- **Sample 1:** `Agliana hè una cumuna toscana di a pruvincia di Pistoia. Teni abitanti cumuna di...`
93
 
94
  | Vocab | Tokens | Count |
95
  |-------|--------|-------|
96
- | 8k | `▁a gli ana ▁hè ▁una ▁cumunatoscanadi ▁a ▁pruvincia ... (+10 more)` | 20 |
97
- | 16k | `▁a gli ana ▁hè ▁una ▁cumunatoscanadia ▁pruvincia ... (+8 more)` | 18 |
98
- | 32k | `▁agli ana ▁hè ▁una ▁cumunatoscanadiapruvincia ▁di ... (+7 more)` | 17 |
99
- | 64k | `▁agliana ▁hè ▁una ▁cumunatoscanadiapruvincia ▁di ▁pistoia ... (+6 more)` | 16 |
100
 
101
- **Sample 2:** `Monteriggioni hè una cumuna toscana di a pruvincia di Siena.Teni 7.877 abitanti....`
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
- | 8k | `▁monte ri ggi oni ▁hè ▁una ▁cumuna ▁toscanadia ... (+15 more)` | 25 |
106
- | 16k | `▁monte ri ggi oni ▁hè ▁una ▁cumuna ▁toscanadia ... (+15 more)` | 25 |
107
- | 32k | `▁monte ri ggi oni ▁hè ▁una ▁cumuna ▁toscana ▁di ▁a ... (+15 more)` | 25 |
108
- | 64k | `▁monteriggioni ▁hè ▁una ▁cumuna ▁toscana ▁di ▁apruvincia ▁di ▁siena ... (+12 more)` | 22 |
109
 
110
- **Sample 3:** `Sean Justin Pennun attore americanu. Biugrafia Da vede dinò The Thin Red Lin...`
111
 
112
  | Vocab | Tokens | Count |
113
  |-------|--------|-------|
114
- | 8k | `▁s ean ▁j us tinpen n ▁hè ▁un ▁attore ... (+22 more)` | 32 |
115
- | 16k | `▁sean ▁jus tinpen n ▁hè ▁unattore ▁americanu . ... (+16 more)` | 26 |
116
- | 32k | `▁sean ▁jus tinpenn ▁hè ▁unattoreamericanu . ▁biugrafia ... (+13 more)` | 23 |
117
- | 64k | `▁sean ▁justinpenn ▁hè ▁unattoreamericanu . ▁biugrafia ▁da ... (+12 more)` | 22 |
118
 
119
 
120
  ### Key Findings
121
 
122
- - **Best Compression:** 64k achieves 4.197x compression
123
- - **Lowest UNK Rate:** 8k with 0.0321% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
126
 
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
137
 
138
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
  |--------|---------|------------|---------|----------------|------------------|-------------------|
140
- | **2-gram** | Word | 9,228 | 13.17 | 49,319 | 22.0% | 44.8% |
141
- | **2-gram** | Subword | 221 🏆 | 7.79 | 3,181 | 71.2% | 99.6% |
142
- | **3-gram** | Word | 24,246 | 14.57 | 83,012 | 11.1% | 30.7% |
143
- | **3-gram** | Subword | 1,706 | 10.74 | 22,404 | 28.4% | 77.6% |
144
- | **4-gram** | Word | 41,538 | 15.34 | 136,699 | 9.4% | 25.8% |
145
- | **4-gram** | Subword | 9,044 | 13.14 | 107,042 | 13.9% | 42.6% |
 
 
146
 
147
  ### Top 5 N-grams by Size
148
 
@@ -150,21 +162,21 @@ Below are sample sentences tokenized with each vocabulary size:
150
 
151
  | Rank | N-gram | Count |
152
  |------|--------|-------|
153
- | 1 | `di u` | 18,783 |
154
- | 2 | `di a` | 18,523 |
155
- | 3 | `di l` | 13,279 |
156
- | 4 | `di i` | 10,605 |
157
- | 5 | `à u` | 9,199 |
158
 
159
  **3-grams (Word):**
160
 
161
  | Rank | N-gram | Count |
162
  |------|--------|-------|
163
  | 1 | `a famiglia di` | 4,349 |
164
- | 2 | `hè una spezia` | 3,355 |
165
- | 3 | `di a famiglia` | 2,698 |
166
  | 4 | `hè una pianta` | 2,612 |
167
- | 5 | `una spezia di` | 2,287 |
168
 
169
  **4-grams (Word):**
170
 
@@ -172,46 +184,66 @@ Below are sample sentences tokenized with each vocabulary size:
172
  |------|--------|-------|
173
  | 1 | `di a famiglia di` | 2,629 |
174
  | 2 | `a famiglia di i` | 2,171 |
175
- | 3 | `hè una spezia di` | 2,061 |
176
  | 4 | `annantu à wikimedia commons` | 1,945 |
177
- | 5 | `à wikimedia commons di` | 1,923 |
 
 
 
 
 
 
 
 
 
 
178
 
179
  **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
- | 1 | `i _` | 432,981 |
184
- | 2 | `a _` | 404,157 |
185
- | 3 | `u _` | 316,081 |
186
- | 4 | `_ d` | 246,351 |
187
- | 5 | `d i` | 217,005 |
188
 
189
  **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
- | 1 | `_ d i` | 173,124 |
194
- | 2 | `d i _` | 152,141 |
195
- | 3 | `_ i n` | 82,653 |
196
- | 4 | `_ u _` | 81,426 |
197
- | 5 | `_ a _` | 72,871 |
198
 
199
  **4-grams (Subword):**
200
 
201
  | Rank | N-gram | Count |
202
  |------|--------|-------|
203
- | 1 | `_ d i _` | 143,493 |
204
- | 2 | `_ i n _` | 57,416 |
205
- | 3 | `a _ d i` | 45,268 |
206
- | 4 | `_ h è _` | 44,732 |
207
- | 5 | `i _ d i` | 35,176 |
 
 
 
 
 
 
 
 
 
 
208
 
209
 
210
  ### Key Findings
211
 
212
- - **Best Perplexity:** 2-gram (subword) with 221
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
- - **Coverage:** Top-1000 patterns cover ~43% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
227
 
228
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
- | **1** | Word | 0.8949 | 1.860 | 5.60 | 123,267 | 10.5% |
231
- | **1** | Subword | 1.0516 | 2.073 | 8.41 | 976 | 0.0% |
232
- | **2** | Word | 0.3102 | 1.240 | 1.80 | 688,381 | 69.0% |
233
- | **2** | Subword | 0.9618 | 1.948 | 5.61 | 8,204 | 3.8% |
234
- | **3** | Word | 0.1337 | 1.097 | 1.25 | 1,235,287 | 86.6% |
235
- | **3** | Subword | 0.7919 | 1.731 | 3.99 | 46,007 | 20.8% |
236
- | **4** | Word | 0.0622 🏆 | 1.044 | 1.10 | 1,541,605 | 93.8% |
237
- | **4** | Subword | 0.6473 | 1.566 | 2.90 | 183,668 | 35.3% |
238
 
239
  ### Generated Text Samples (Word-based)
240
 
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
242
 
243
  **Context Size 1:**
244
 
245
- 1. `di l onore di culombu facciandine e rete di pianta di u guvernu à spessu in`
246
- 2. `u so foglie basale lanceulate è difficili suprattuttu vocalici senza la tira glǝ munnǝ è`
247
- 3. `a gioia quandu ridatti i casci forsi statu indipindente di l india di sporti ecunumia`
248
 
249
  **Context Size 2:**
250
 
251
- 1. `di u muvimentu di a pruvincia agira aidone assoro calascibetta caltanissetta cl gangi pa leonforte n...`
252
- 2. `di a corsica nordu africa uccidintali in sudafrica è in europa meridiunale è cintrale burhinus oedic...`
253
- 3. `di l annu avenimenti in corsica jeanmonod d gamisans j flora corsica 2 ed edisud noti altri`
254
 
255
  **Context Size 3:**
256
 
257
- 1. `a famiglia di e papaveraceae si distingue da i so piccioli ritti ramificati è cuparti à pela`
258
- 2. `hè una spezia di pianta chì face parte di a famiglia di i labrinae ss articulu pruveni in`
259
- 3. `di a famiglia di i poaceae discrizzioni poa bulbosa prisenti in l alpi i pirenei è i`
260
 
261
  **Context Size 4:**
262
 
263
- 1. `di a famiglia di e polygonaceae si distingue da e so fiurarelli rusulatu pallidu à purpureu ragruppa...`
264
- 2. `a famiglia di i dryopteridaceae ss articulu pruveni in parti o in tutalità da l articulu currispunde...`
265
- 3. `hè una spezia di pianta arbacea vivaci appartinendu à a famiglia di i fabaceae discrizzioni ornithop...`
266
 
267
 
268
  ### Generated Text Samples (Subword-based)
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
271
 
272
  **Context Size 1:**
273
 
274
- 1. `_pinaga._i_cavac`
275
- 2. `isa_se_ssa_villa`
276
- 3. `ara_dinum'a_dici`
277
 
278
  **Context Size 2:**
279
 
280
- 1. `i_fece_fiazionduc`
281
- 2. `a_hè_a_chì_nalegu`
282
- 3. `u_50px_le_d'isi_f`
283
 
284
  **Context Size 3:**
285
 
286
- 1. `_di_"forte_pianu_p`
287
- 2. `di_incamplica_è_fa`
288
- 3. `_in_atlantunimentr`
289
 
290
  **Context Size 4:**
291
 
292
- 1. `_di_frutti_in_corsa`
293
- 2. `_in_u_harrisparterà`
294
- 3. `a_di_lunghjadori_ri`
295
 
296
 
297
  ### Key Findings
298
 
299
  - **Best Predictability:** Context-4 (word) with 93.8% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
- - **Memory Trade-off:** Larger contexts require more storage (183,668 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
@@ -314,64 +346,64 @@ Below are text samples generated from each subword-based Markov chain model:
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
- | Vocabulary Size | 58,612 |
318
- | Total Tokens | 2,193,141 |
319
  | Mean Frequency | 37.42 |
320
  | Median Frequency | 4 |
321
- | Frequency Std Dev | 979.13 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
- | 1 | di | 143,885 |
328
- | 2 | u | 84,171 |
329
- | 3 | a | 75,994 |
330
- | 4 | è | 66,959 |
331
- | 5 | in | 58,823 |
332
- | 6 | à | 58,335 |
333
- | 7 | l | 48,252 |
334
- | 8 | hè | 45,746 |
335
- | 9 | i | 45,068 |
336
- | 10 | da | 24,631 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
340
  | Rank | Word | Frequency |
341
  |------|------|-----------|
342
- | 1 | zampigiallu | 2 |
343
- | 2 | lepeletier | 2 |
344
- | 3 | nigrithorax | 2 |
345
- | 4 | crabro | 2 |
346
- | 5 | entomologhi | 2 |
347
- | 6 | priculusità | 2 |
348
- | 7 | apiarie | 2 |
349
- | 8 | cottura | 2 |
350
- | 9 | risuttati | 2 |
351
- | 10 | tippicu | 2 |
352
 
353
  ### Zipf's Law Analysis
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
- | Zipf Coefficient | 1.0564 |
358
- | R² (Goodness of Fit) | 0.996983 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
362
 
363
  | Top N Words | Coverage |
364
  |-------------|----------|
365
- | Top 100 | 48.8% |
366
  | Top 1,000 | 69.5% |
367
  | Top 5,000 | 84.0% |
368
  | Top 10,000 | 89.4% |
369
 
370
  ### Key Findings
371
 
372
- - **Zipf Compliance:** R²=0.9970 indicates excellent adherence to Zipf's law
373
- - **High Frequency Dominance:** Top 100 words cover 48.8% of corpus
374
- - **Long Tail:** 48,612 words needed for remaining 10.6% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
387
 
388
  ### 5.1 Cross-Lingual Alignment
389
 
390
- > *Note: Multilingual alignment visualization not available for this language.*
 
 
391
 
392
 
393
  ### 5.2 Model Comparison
394
 
395
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
  |-------|-----------|----------|------------------|---------------|----------------|
397
- | **mono_32d** | 32 | 0.8272 🏆 | 0.3408 | N/A | N/A |
398
- | **mono_64d** | 64 | 0.8188 | 0.2697 | N/A | N/A |
399
- | **mono_128d** | 128 | 0.7473 | 0.2166 | N/A | N/A |
 
 
 
400
 
401
  ### Key Findings
402
 
403
- - **Best Isotropy:** mono_32d with 0.8272 (more uniform distribution)
404
- - **Semantic Density:** Average pairwise similarity of 0.2757. Lower values indicate better semantic separation.
405
- - **Alignment Quality:** No aligned models evaluated in this run.
406
  - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
  ## 6. Morphological Analysis (Experimental)
410
 
411
- > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
-
413
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
 
415
  ### 6.1 Productivity & Complexity
416
 
417
  | Metric | Value | Interpretation | Recommendation |
418
  |--------|-------|----------------|----------------|
419
- | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
- | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
 
422
  ### 6.2 Affix Inventory (Productive Units)
423
 
@@ -426,26 +461,24 @@ These are the most productive prefixes and suffixes identified by sampling the v
426
  #### Productive Prefixes
427
  | Prefix | Examples |
428
  |--------|----------|
429
- | `-cu` | cullisori, cunisciutu, cumbinatoria |
430
- | `-ca` | cartagene, caerulescens, casagliò |
431
- | `-ri` | rizomatosu, ritiranu, ricustruita |
432
- | `-in` | innù, ingannatu, ingaghjatu |
433
- | `-pr` | produtta, predita, produzzione |
434
- | `-ma` | macidonia, matrimonii, maestro |
435
- | `-di` | difendidori, differenziale, dicriscenti |
436
- | `-pa` | pavillon, paola, parentella |
437
 
438
  #### Productive Suffixes
439
  | Suffix | Examples |
440
  |--------|----------|
441
- | `-a` | occhjatana, mdina, illeghjittima |
442
- | `-i` | petrignani, quindici, cullisori |
443
- | `-u` | locudoresu, glaucu, fuculaghju |
444
- | `-e` | phryganae, christine, volume |
445
- | `-tu` | cunisciutu, bassistu, ingannatu |
446
- | `-ni` | petrignani, parsicuzioni, bizantini |
447
- | `-ti` | viditi, dalmati, stupefacenti |
448
- | `-ta` | avvilanata, szocialista, produtta |
449
 
450
  ### 6.3 Bound Stems (Lexical Roots)
451
 
@@ -453,18 +486,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
453
 
454
  | Stem | Cohesion | Substitutability | Examples |
455
  |------|----------|------------------|----------|
456
- | `endu` | 2.27x | 73 contexts | fendu, vendu, dendu |
457
- | `enti` | 1.76x | 119 contexts | lenti, penti, menti |
458
- | `azio` | 1.86x | 55 contexts | tazio, lazio, orazio |
459
- | `aghj` | 1.50x | 141 contexts | aghje, aghju, aghja |
460
- | `ment` | 1.57x | 87 contexts | mentr, menti, menta |
461
- | `glia` | 1.64x | 69 contexts | aglia, figlia, voglia |
462
- | `zion` | 1.67x | 63 contexts | lezion, azione, nuzione |
463
- | `igli` | 1.44x | 112 contexts | figli, migli, cigli |
464
- | `tura` | 1.59x | 62 contexts | altura, matura, turaci |
465
- | `cors` | 1.85x | 33 contexts | corsa, corso, corsi |
466
- | `sica` | 1.55x | 37 contexts | fisica, sicani, musica |
467
- | `ific` | 1.48x | 43 contexts | edificà, pacific, unificà |
468
 
469
  ### 6.4 Affix Compatibility (Co-occurrence)
470
 
@@ -472,16 +505,16 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
472
 
473
  | Prefix | Suffix | Frequency | Examples |
474
  |--------|--------|-----------|----------|
475
- | `-cu` | `-u` | 75 words | cumandamentu, cutratu |
476
- | `-cu` | `-i` | 74 words | cuttoli, custituenti |
477
- | `-ri` | `-i` | 69 words | riunghji, riferimenti |
478
- | `-pr` | `-i` | 66 words | prufundamenti, primuri |
479
- | `-in` | `-i` | 66 words | infruttuosi, indoauropei |
480
- | `-cu` | `-a` | 64 words | cumpattezza, cunghjunghja |
481
- | `-ca` | `-u` | 63 words | cancelieru, cattru |
482
- | `-cu` | `-e` | 58 words | cuuperazione, cuscione |
483
- | `-ca` | `-a` | 54 words | capua, cathartica |
484
- | `-ri` | `-a` | 51 words | rivolta, ridotta |
485
 
486
  ### 6.5 Recursive Morpheme Segmentation
487
 
@@ -489,26 +522,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
489
 
490
  | Word | Suggested Split | Confidence | Stem |
491
  |------|-----------------|------------|------|
492
- | incasciata | **`in-ca-scia-ta`** | 7.5 | `scia` |
493
- | mariteddu | **`ma-ri-teddu`** | 6.0 | `teddu` |
494
- | olivetani | **`olive-ta-ni`** | 6.0 | `olive` |
495
- | infattonu | **`in-fatto-nu`** | 6.0 | `fatto` |
496
- | indebulitu | **`in-debuli-tu`** | 6.0 | `debuli` |
497
- | cunvertuti | **`cu-nver-tu-ti`** | 4.5 | `nver` |
498
- | sustenenu | **`sustene-nu`** | 4.5 | `sustene` |
499
- | cunsultatu | **`cu-nsul-ta-tu`** | 4.5 | `nsul` |
500
- | dilimitatu | **`di-limi-ta-tu`** | 4.5 | `limi` |
501
- | reichardia | **`reichard-ia`** | 4.5 | `reichard` |
502
- | affissati | **`affissa-ti`** | 4.5 | `affissa` |
503
- | riabilità | **`ri-abilità`** | 4.5 | `abilità` |
504
- | siracusani | **`siracusa-ni`** | 4.5 | `siracusa` |
505
- | ripresenta | **`ri-pr-esen-ta`** | 4.5 | `esen` |
506
- | chjappani | **`chjappa-ni`** | 4.5 | `chjappa` |
507
 
508
  ### 6.6 Linguistic Interpretation
509
 
510
  > **Automated Insight:**
511
- The language CO appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
512
 
513
  ---
514
  ## 7. Summary & Recommendations
@@ -519,8 +552,8 @@ The language CO appears to be more isolating or has a highly fixed vocabulary. W
519
 
520
  | Component | Recommended | Rationale |
521
  |-----------|-------------|-----------|
522
- | Tokenizer | **64k BPE** | Best compression (4.20x) |
523
- | N-gram | **2-gram** | Lowest perplexity (221) |
524
  | Markov | **Context-4** | Highest predictability (93.8%) |
525
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
526
 
@@ -735,4 +768,4 @@ MIT License - Free for academic and commercial use.
735
  ---
736
  *Generated by Wikilangs Models Pipeline*
737
 
738
- *Report Date: 2026-01-03 10:28:53*
 
1
  ---
2
  language: co
3
+ language_name: Corsican
4
  language_family: romance_galloitalic
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-romance_galloitalic
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.216
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.8262
40
  - name: vocabulary_size
41
  type: vocab
42
  value: 0
43
  generated: 2026-01-03
44
  ---
45
 
46
+ # Corsican - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Corsican** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
  - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
 
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.429x | 3.43 | 0.0264% | 363,461 |
94
+ | **16k** | 3.706x | 3.71 | 0.0285% | 336,335 |
95
+ | **32k** | 3.986x | 3.99 | 0.0307% | 312,675 |
96
+ | **64k** | 4.216x 🏆 | 4.22 | 0.0325% | 295,625 |
97
 
98
  ### Tokenization Examples
99
 
100
  Below are sample sentences tokenized with each vocabulary size:
101
 
102
+ **Sample 1:** `Ophrys splendida hè una pianta chì face partita di a famiglia di l'orchidaceae. ...`
103
 
104
  | Vocab | Tokens | Count |
105
  |-------|--------|-------|
106
+ | 8k | `▁ophrys ▁sp len di da ▁hè ▁una ▁piantachìface ... (+13 more)` | 23 |
107
+ | 16k | `▁ophrys ▁splen di da ▁hè ▁una ▁piantachìfacepartita ... (+12 more)` | 22 |
108
+ | 32k | `▁ophrys ▁splendi da ▁hè ▁una ▁piantachìfacepartita ▁di ... (+11 more)` | 21 |
109
+ | 64k | `▁ophryssplendida ▁hè ▁una ▁piantachìfacepartita ▁di ▁a ... (+10 more)` | 20 |
110
 
111
+ **Sample 2:** `U Mucale hè una cumuna di u dipartimentu di a Corsica suprana. Geografia Storia ...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
+ | 8k | `▁u ▁mu cale ▁hè ▁una ▁cumuna ▁diudipartimentu ▁di ... (+14 more)` | 24 |
116
+ | 16k | `▁u ▁mu cale ▁hè ▁una ▁cumuna ▁diudipartimentu ▁di ... (+14 more)` | 24 |
117
+ | 32k | `▁u ▁mucale ▁hè ▁una ▁cumuna ▁diu ▁dipartimentu ▁di ▁a ... (+13 more)` | 23 |
118
+ | 64k | `▁umucale ▁hè ▁una ▁cumuna ▁di ▁udipartimentu ▁di ▁a ... (+13 more)` | 23 |
119
 
120
+ **Sample 3:** `L'Emilia è Romagnauna regione taliana. taliana`
121
 
122
  | Vocab | Tokens | Count |
123
  |-------|--------|-------|
124
+ | 8k | `▁l ' e mi lia ▁è roma gna ▁hè ▁una ... (+4 more)` | 14 |
125
+ | 16k | `▁l ' emi lia ▁è roma gna ▁hè ▁unaregione ... (+3 more)` | 13 |
126
+ | 32k | `▁l ' emi lia ▁è romagna ▁hè ▁unaregionetaliana ... (+2 more)` | 12 |
127
+ | 64k | `▁l ' emilia ▁è romagna ▁hè ▁unaregionetaliana . ... (+1 more)` | 11 |
128
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.216x compression
133
+ - **Lowest UNK Rate:** 8k with 0.0264% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
 
 
147
 
148
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
  |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 9,217 | 13.17 | 49,361 | 22.0% | 44.8% |
151
+ | **2-gram** | Subword | 220 🏆 | 7.78 | 3,170 | 71.3% | 99.6% |
152
+ | **3-gram** | Word | 24,245 | 14.57 | 83,032 | 11.2% | 30.7% |
153
+ | **3-gram** | Subword | 1,698 | 10.73 | 22,203 | 28.4% | 77.7% |
154
+ | **4-gram** | Word | 41,699 | 15.35 | 137,212 | 9.3% | 25.7% |
155
+ | **4-gram** | Subword | 9,000 | 13.14 | 106,299 | 13.9% | 42.6% |
156
+ | **5-gram** | Word | 36,326 | 15.15 | 111,629 | 9.3% | 26.7% |
157
+ | **5-gram** | Subword | 31,819 | 14.96 | 280,787 | 8.5% | 26.7% |
158
 
159
  ### Top 5 N-grams by Size
160
 
 
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
+ | 1 | `di u` | 18,692 |
166
+ | 2 | `di a` | 18,500 |
167
+ | 3 | `di l` | 13,231 |
168
+ | 4 | `di i` | 10,603 |
169
+ | 5 | `à u` | 9,233 |
170
 
171
  **3-grams (Word):**
172
 
173
  | Rank | N-gram | Count |
174
  |------|--------|-------|
175
  | 1 | `a famiglia di` | 4,349 |
176
+ | 2 | `hè una spezia` | 3,359 |
177
+ | 3 | `di a famiglia` | 2,699 |
178
  | 4 | `hè una pianta` | 2,612 |
179
+ | 5 | `una spezia di` | 2,290 |
180
 
181
  **4-grams (Word):**
182
 
 
184
  |------|--------|-------|
185
  | 1 | `di a famiglia di` | 2,629 |
186
  | 2 | `a famiglia di i` | 2,171 |
187
+ | 3 | `hè una spezia di` | 2,064 |
188
  | 4 | `annantu à wikimedia commons` | 1,945 |
189
+ | 5 | `à wikimedia commons di` | 1,924 |
190
+
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `annantu à wikimedia commons di` | 1,924 |
196
+ | 2 | `à wikimedia commons di corsica` | 1,923 |
197
+ | 3 | `appartinendu à a famiglia di` | 1,506 |
198
+ | 4 | `flora corsica 2 ed edisud` | 1,421 |
199
+ | 5 | `d gamisans j flora corsica` | 1,419 |
200
 
201
  **2-grams (Subword):**
202
 
203
  | Rank | N-gram | Count |
204
  |------|--------|-------|
205
+ | 1 | `i _` | 432,205 |
206
+ | 2 | `a _` | 403,888 |
207
+ | 3 | `u _` | 315,849 |
208
+ | 4 | `_ d` | 246,098 |
209
+ | 5 | `d i` | 216,563 |
210
 
211
  **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `_ d i` | 172,754 |
216
+ | 2 | `d i _` | 151,658 |
217
+ | 3 | `_ i n` | 82,722 |
218
+ | 4 | `_ u _` | 81,534 |
219
+ | 5 | `_ a _` | 73,027 |
220
 
221
  **4-grams (Subword):**
222
 
223
  | Rank | N-gram | Count |
224
  |------|--------|-------|
225
+ | 1 | `_ d i _` | 143,050 |
226
+ | 2 | `_ i n _` | 57,478 |
227
+ | 3 | `a _ d i` | 45,041 |
228
+ | 4 | `_ h è _` | 45,025 |
229
+ | 5 | `i _ d i` | 35,043 |
230
+
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `a _ d i _` | 37,617 |
236
+ | 2 | `i _ d i _` | 29,786 |
237
+ | 3 | `u _ d i _` | 28,746 |
238
+ | 4 | `e _ d i _` | 24,400 |
239
+ | 5 | `i o n e _` | 21,123 |
240
 
241
 
242
  ### Key Findings
243
 
244
+ - **Best Perplexity:** 2-gram (subword) with 220
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~27% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
259
 
260
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.8927 | 1.857 | 5.58 | 123,322 | 10.7% |
263
+ | **1** | Subword | 0.8627 | 1.818 | 6.97 | 1,238 | 13.7% |
264
+ | **2** | Word | 0.3106 | 1.240 | 1.80 | 686,898 | 68.9% |
265
+ | **2** | Subword | 0.9133 | 1.883 | 5.37 | 8,617 | 8.7% |
266
+ | **3** | Word | 0.1339 | 1.097 | 1.25 | 1,233,325 | 86.6% |
267
+ | **3** | Subword | 0.7817 | 1.719 | 3.96 | 46,221 | 21.8% |
268
+ | **4** | Word | 0.0623 🏆 | 1.044 | 1.10 | 1,539,570 | 93.8% |
269
+ | **4** | Subword | 0.6452 | 1.564 | 2.90 | 182,986 | 35.5% |
270
 
271
  ### Generated Text Samples (Word-based)
272
 
 
274
 
275
  **Context Size 1:**
276
 
277
+ 1. `di tuda una spezia un missale rumanu mandatu a prutezzione di l isula`
278
+ 2. `u calendariu gregorianu evenimenti nascite morte celebrazione feste i primi cristiani è l euru e zon...`
279
+ 3. `a bellula chì faci cantà senza scoddhi e pratuline i bagni di 25 aprile di nettaru`
280
 
281
  **Context Size 2:**
282
 
283
+ 1. `di u mare à trasporti maritimi portivechju ancu statu cunnisciuta sottu u nomu simonu a casata`
284
+ 2. `di a spagna un statu di spiritu turmintosa da veda dinò camisgia pilonu a camisgetta di corsica`
285
+ 3. `di l europa occidentale di cipru di u bacinu mediterraniu induv ella ghjunta in alisgiani u`
286
 
287
  **Context Size 3:**
288
 
289
+ 1. `a famiglia di l orobanchaceae si distingui da i so grandi fiori gialli è arancini à forma di`
290
+ 2. `hè una spezia largamente sparta in a so aria di ripartizioni eppuri certi pupulazioni poni essa mina...`
291
+ 3. `di a famiglia di i brassicaceae si caratterizeghja da u so portu cispugliosu è cumpattu aghjunghjend...`
292
 
293
  **Context Size 4:**
294
 
295
+ 1. `di a famiglia di l arecaceae ed largamenti apprizzatu par a so biddezza è u so simbulu astrunomic...`
296
+ 2. `a famiglia di i sapindaceae discrizzioni l acer negundo un arburi scascianti chì aghjunghja un...`
297
+ 3. `hè una spezia di pianta chì faci parti di a famiglia di l hirundinidae descrizzione a rundinella cas...`
298
 
299
 
300
  ### Generated Text Samples (Subword-based)
 
303
 
304
  **Context Size 1:**
305
 
306
+ 1. `_diri_25_à_di_d'`
307
+ 2. `iori_hà_siceisu_`
308
+ 3. `adia_puvezota_fi`
309
 
310
  **Context Size 2:**
311
 
312
+ 1. `i_re_culupula_à_s`
313
+ 2. `a_ufoltrupatichar`
314
+ 3. `u_à_ligna_culanea`
315
 
316
  **Context Size 3:**
317
 
318
+ 1. `_di_abbrunu,_cator`
319
+ 2. `di_arbaceae._nore_`
320
+ 3. `_induv'eddu;_annan`
321
 
322
  **Context Size 4:**
323
 
324
+ 1. `_di_yprestitudi_à_s`
325
+ 2. `_in_amba_di_l'incen`
326
+ 3. `a_di_l'aurolli_di_b`
327
 
328
 
329
  ### Key Findings
330
 
331
  - **Best Predictability:** Context-4 (word) with 93.8% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (182,986 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 58,569 |
350
+ | Total Tokens | 2,191,854 |
351
  | Mean Frequency | 37.42 |
352
  | Median Frequency | 4 |
353
+ | Frequency Std Dev | 979.31 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | di | 143,436 |
360
+ | 2 | u | 84,175 |
361
+ | 3 | a | 76,019 |
362
+ | 4 | è | 67,153 |
363
+ | 5 | in | 58,881 |
364
+ | 6 | à | 58,439 |
365
+ | 7 | l | 48,309 |
366
+ | 8 | hè | 46,050 |
367
+ | 9 | i | 45,085 |
368
+ | 10 | da | 24,609 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
372
  | Rank | Word | Frequency |
373
  |------|------|-----------|
374
+ | 1 | hannovra | 2 |
375
+ | 2 | multifau | 2 |
376
+ | 3 | vendanges | 2 |
377
+ | 4 | voceratrice | 2 |
378
+ | 5 | paysage | 2 |
379
+ | 6 | coin | 2 |
380
+ | 7 | paysan | 2 |
381
+ | 8 | spezialità | 2 |
382
+ | 9 | alerta | 2 |
383
+ | 10 | ꦈꦠꦩ | 2 |
384
 
385
  ### Zipf's Law Analysis
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 1.0566 |
390
+ | R² (Goodness of Fit) | 0.997058 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
394
 
395
  | Top N Words | Coverage |
396
  |-------------|----------|
397
+ | Top 100 | 48.9% |
398
  | Top 1,000 | 69.5% |
399
  | Top 5,000 | 84.0% |
400
  | Top 10,000 | 89.4% |
401
 
402
  ### Key Findings
403
 
404
+ - **Zipf Compliance:** R²=0.9971 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 48.9% of corpus
406
+ - **Long Tail:** 48,569 words needed for remaining 10.6% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
419
 
420
  ### 5.1 Cross-Lingual Alignment
421
 
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
 
426
 
427
  ### 5.2 Model Comparison
428
 
429
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
  |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8262 🏆 | 0.3363 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.8192 | 0.2582 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.7654 | 0.2010 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8262 | 0.3340 | 0.0540 | 0.2540 |
435
+ | **aligned_64d** | 64 | 0.8192 | 0.2633 | 0.0880 | 0.3460 |
436
+ | **aligned_128d** | 128 | 0.7654 | 0.1975 | 0.1560 | 0.4960 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_32d with 0.8262 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.2651. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 15.6% R@1 in cross-lingual retrieval.
443
  - **Recommendation:** 128d aligned for best cross-lingual performance
444
 
445
  ---
446
  ## 6. Morphological Analysis (Experimental)
447
 
 
 
448
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
 
450
  ### 6.1 Productivity & Complexity
451
 
452
  | Metric | Value | Interpretation | Recommendation |
453
  |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **0.002** | Low formulaic content | - |
456
 
457
  ### 6.2 Affix Inventory (Productive Units)
458
 
 
461
  #### Productive Prefixes
462
  | Prefix | Examples |
463
  |--------|----------|
464
+ | `-cu` | cunfutà, cuddazioni, cuntera |
465
+ | `-ca` | castres, caprimulgus, calciu |
466
+ | `-ri` | rivede, rispettà, riurganizò |
467
+ | `-in` | ingegneri, incausà, indì |
468
+ | `-pr` | pridatori, privileghju, preferisci |
469
+ | `-di` | dinastìa, disintegra, dicennovi |
 
 
470
 
471
  #### Productive Suffixes
472
  | Suffix | Examples |
473
  |--------|----------|
474
+ | `-i` | addevi, ingegneri, midianti |
475
+ | `-u` | spagnolu, belgiu, vòtu |
476
+ | `-a` | dinastìa, leucoraja, seduta |
477
+ | `-e` | rivede, uccidentale, marginale |
478
+ | `-tu` | vòtu, validatu, prisirvatu |
479
+ | `-ti` | midianti, rapprisintati, sminticati |
480
+ | `-ni` | cuddazioni, vogliini, cardini |
481
+ | `-ta` | seduta, atalanta, rota |
482
 
483
  ### 6.3 Bound Stems (Lexical Roots)
484
 
 
486
 
487
  | Stem | Cohesion | Substitutability | Examples |
488
  |------|----------|------------------|----------|
489
+ | `endu` | 2.14x | 73 contexts | fendu, vendu, dendu |
490
+ | `enti` | 1.81x | 118 contexts | nenti, denti, lenti |
491
+ | `igli` | 1.63x | 112 contexts | gigli, migli, cigli |
492
+ | `aghj` | 1.46x | 142 contexts | aghji, aghju, aghja |
493
+ | `glia` | 1.66x | 70 contexts | aglia, paglia, figlia |
494
+ | `azio` | 1.75x | 56 contexts | tazio, lazio, orazio |
495
+ | `zion` | 1.65x | 64 contexts | azione, nozione, lezioni |
496
+ | `ment` | 1.48x | 87 contexts | mente, menti, menta |
497
+ | `cors` | 1.80x | 33 contexts | corso, corsa, corse |
498
+ | `ific` | 1.57x | 45 contexts | pacific, unificò, unificà |
499
+ | `tura` | 1.38x | 62 contexts | datura, altura, natura |
500
+ | `sica` | 1.56x | 37 contexts | mùsica, fìsica, sicani |
501
 
502
  ### 6.4 Affix Compatibility (Co-occurrence)
503
 
 
505
 
506
  | Prefix | Suffix | Frequency | Examples |
507
  |--------|--------|-----------|----------|
508
+ | `-cu` | `-i` | 84 words | curteghji, cubiti |
509
+ | `-cu` | `-u` | 82 words | cuntestatu, cunvertitu |
510
+ | `-ri` | `-u` | 67 words | righjistru, riguardu |
511
+ | `-cu` | `-a` | 64 words | cultelleria, cunsacra |
512
+ | `-cu` | `-e` | 62 words | cundannate, cunstruzione |
513
+ | `-in` | `-u` | 61 words | ingombru, inchietu |
514
+ | `-ca` | `-a` | 59 words | calandra, cantata |
515
+ | `-in` | `-i` | 58 words | insufficienti, intarsizioni |
516
+ | `-ca` | `-u` | 58 words | caratteru, capistranu |
517
+ | `-pr` | `-i` | 56 words | preparazioni, prisintati |
518
 
519
  ### 6.5 Recursive Morpheme Segmentation
520
 
 
522
 
523
  | Word | Suggested Split | Confidence | Stem |
524
  |------|-----------------|------------|------|
525
+ | indibulitu | **`in-di-buli-tu`** | 7.5 | `buli` |
526
+ | dirighjitu | **`di-ri-ghji-tu`** | 7.5 | `ghji` |
527
+ | dimustrati | **`di-mustra-ti`** | 6.0 | `mustra` |
528
+ | ricustruisce | **`ri-cu-struisce`** | 6.0 | `struisce` |
529
+ | ricustruite | **`ri-cu-struite`** | 6.0 | `struite` |
530
+ | saturnianu | **`saturn-ia-nu`** | 6.0 | `saturn` |
531
+ | rivoltani | **`ri-volta-ni`** | 6.0 | `volta` |
532
+ | divenendu | **`di-venendu`** | 4.5 | `venendu` |
533
+ | indicheghjanu | **`in-di-cheghja-nu`** | 4.5 | `cheghja` |
534
+ | accupavanu | **`accupava-nu`** | 4.5 | `accupava` |
535
+ | granulita | **`granuli-ta`** | 4.5 | `granuli` |
536
+ | principionu | **`pr-in-cipio-nu`** | 4.5 | `cipio` |
537
+ | attaccani | **`attacca-ni`** | 4.5 | `attacca` |
538
+ | supranatu | **`suprana-tu`** | 4.5 | `suprana` |
539
+ | asciuvatu | **`asciuva-tu`** | 4.5 | `asciuva` |
540
 
541
  ### 6.6 Linguistic Interpretation
542
 
543
  > **Automated Insight:**
544
+ The language Corsican shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
545
 
546
  ---
547
  ## 7. Summary & Recommendations
 
552
 
553
  | Component | Recommended | Rationale |
554
  |-----------|-------------|-----------|
555
+ | Tokenizer | **64k BPE** | Best compression (4.22x) |
556
+ | N-gram | **2-gram** | Lowest perplexity (220) |
557
  | Markov | **Context-4** | Highest predictability (93.8%) |
558
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
559
 
 
768
  ---
769
  *Generated by Wikilangs Models Pipeline*
770
 
771
+ *Report Date: 2026-01-03 20:37:45*
models/embeddings/aligned/co_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b1188259a56d403865faa99fa1350b00926f10763c1237aa3e872cced7601be
3
+ size 1056840398
models/embeddings/aligned/co_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "co", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/co_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea211f0fda570a4fac50984b5cec2e1159b1e3f2e86395f518eede63ccabc5da
3
+ size 65664
models/embeddings/aligned/co_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "co",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7516,
7
+ "vocab_size": 31527
8
+ }
models/embeddings/aligned/co_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95e90e81f99abdbfd12e0afed22a1557827ab877d1a3a61a584eb491afd1abeb
3
+ size 264627662
models/embeddings/aligned/co_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "co", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/co_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a26f04f573d7a17eb4b3498fa4df506e36707149738f9ed7355a9a36313b5cb9
3
+ size 4224
models/embeddings/aligned/co_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "co",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7516,
7
+ "vocab_size": 31527
8
+ }
models/embeddings/aligned/co_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8aa3c06a1b412d20ef8dcbd2588899da958ae3efc40cc8b841a5e601b9f6e95
3
+ size 528698574
models/embeddings/aligned/co_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "co", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/co_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1118cba50c88a05a3169c9b628b3c139e380b09637cfed076858f8d2a531505
3
+ size 16512
models/embeddings/aligned/co_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "co",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 7516,
7
+ "vocab_size": 31527
8
+ }
models/embeddings/monolingual/co_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:96cf2c345e68270f8dcdbe99946da8e1091f69fe819c6b9a2158c5e48ed9e52c
3
- size 1056877904
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b1188259a56d403865faa99fa1350b00926f10763c1237aa3e872cced7601be
3
+ size 1056840398
models/embeddings/monolingual/co_128d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
- "vocab_size": 31563
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
+ "vocab_size": 31527
15
  }
models/embeddings/monolingual/co_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1067ad298ad58d7164db3f4db9081298ba2b534ee2da4cd72c1b7dd84f187b81
3
- size 264637520
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95e90e81f99abdbfd12e0afed22a1557827ab877d1a3a61a584eb491afd1abeb
3
+ size 264627662
models/embeddings/monolingual/co_32d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
- "vocab_size": 31563
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
+ "vocab_size": 31527
15
  }
models/embeddings/monolingual/co_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c664f3164ab6a4eac104c4ea7ff6212ebaa4e5e194ba8f7a21e25ea1c0d4871a
3
- size 528717648
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8aa3c06a1b412d20ef8dcbd2588899da958ae3efc40cc8b841a5e601b9f6e95
3
+ size 528698574
models/embeddings/monolingual/co_64d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
- "vocab_size": 31563
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
+ "vocab_size": 31527
15
  }
models/subword_markov/co_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8b5e0c398d4f5b2969e1db1c671105a3ac5242a1d374d84d5b0069106642b3d
3
- size 65281
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ccba47788fdac20dbfe0dc14ede2e235d186ad963d505287d92784b261dc76f
3
+ size 71545
models/subword_markov/co_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_contexts": 976,
6
- "total_transitions": 13219556
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_contexts": 1238,
6
+ "total_transitions": 13211308
7
  }
models/subword_markov/co_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:10d07b4e8c3757cc6b86c68087fcfea9af405d88517a6a0445f37de943be6b99
3
- size 363878
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755dec4f665ee36033a886b40d0259d4fa7d3ef9998d73c8e21b5586257d5116
3
+ size 382643
models/subword_markov/co_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_contexts": 8204,
6
- "total_transitions": 13211059
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_contexts": 8617,
6
+ "total_transitions": 13202755
7
  }
models/subword_markov/co_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab0ac62add6f840e66c319753e1b42d3784d61773053b38c73b6b277df4cca3a
3
- size 1441137
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:627f6479b485a5eb7d1a5dba74948cad853724fa12e413e40fa722f8a3038f39
3
+ size 1491620
models/subword_markov/co_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_contexts": 46007,
6
- "total_transitions": 13202562
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_contexts": 46221,
6
+ "total_transitions": 13194202
7
  }
models/subword_markov/co_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07c83362fcdbe265c5308c85c508b78deedca4f3c3c1ec1a96a44764934510ff
3
- size 4134190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e5d1a220a544ac400dd2df144119c1304ce71a19475f2ddcbd8ee7e0030575b
3
+ size 4190273
models/subword_markov/co_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_contexts": 183668,
6
- "total_transitions": 13194065
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_contexts": 182986,
6
+ "total_transitions": 13185649
7
  }
models/subword_ngram/co_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:899bc5e6584570580099e942da78aa713e4d3807f6ebea5a4ffd604efeea23f2
3
- size 42648
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae24b051ed3af54f3565060e3552cd67a8d903e34ab258a4828b67ff9996b475
3
+ size 42374
models/subword_ngram/co_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_ngrams": 3181,
6
- "total_ngrams": 13219556
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_ngrams": 3170,
6
+ "total_ngrams": 13211308
7
  }
models/subword_ngram/co_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ed57d99baac180f6c586ad2f06d308b877fede514712ded41ed5e8989084810
3
- size 285900
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76c849c163a5eb7e124f5b49aa5b539517b8c3d1e08b885e4b6de423a7f6d6da
3
+ size 283370
models/subword_ngram/co_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_ngrams": 22404,
6
- "total_ngrams": 13211059
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_ngrams": 22203,
6
+ "total_ngrams": 13202755
7
  }
models/subword_ngram/co_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:094c924c5f844afd2646ce2d24dd1cfc9060e5723e944365817cf9c12106c248
3
- size 1233900
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a3030923f89095c97a82d10b87ecd761efc7224def9c96d443f295f4f8d004a
3
+ size 1229873
models/subword_ngram/co_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "co",
5
- "unique_ngrams": 107042,
6
- "total_ngrams": 13202562
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "co",
5
+ "unique_ngrams": 106299,
6
+ "total_ngrams": 13194202
7
  }
models/subword_ngram/co_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6439a330150f404c738100e1929f3dda0f560c148608e1c019d12a7520a2e4d0
3
+ size 3273783
models/subword_ngram/co_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "co",
5
+ "unique_ngrams": 280787,
6
+ "total_ngrams": 13185649
7
+ }
models/tokenizer/co_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b34f2ba9c5b244ddd93aba34ada7fef4711b8397b21d33fd688d1c317cc7cb41
3
- size 516047
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24b3fad0009298815c654db3ae8bb403f55f17281379bf6ee659a34f6c654a85
3
+ size 515937
models/tokenizer/co_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/co_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6ae7a171bd1aba13305f06c6f0f2b827daf529b4e36eed333e8c0c56302860c
3
- size 803640
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed439f585e2b42bfac5587d734a4dfc78dd34d7f9a2c031908d5b05136065565
3
+ size 803263
models/tokenizer/co_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/co_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:17214768ca1dd2e6a0c00363e0983130aeccf918e9ce567d882f1537de050491
3
- size 1383670
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6c942ef7778bdf767b712f27ad74e9b074e60f2430bd878560984dffdd15fa3
3
+ size 1384129
models/tokenizer/co_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/co_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:73dc30b9584b2f1bd0dec231fe033922d1286e98bf5022421f69b9b07cc653e2
3
- size 376505
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:112936f030ea6a09d6e9e276c543e39a95b187e86bc60ea07bb2164cbddd0cbe
3
+ size 376417
models/tokenizer/co_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/co_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf8b269f53cdfcf4bafb12ed650edcd581ad571e89880ac7222ad9b23086308c
3
- size 1013491
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:508286f99a8790038e977d4e50f4780f9c94657fe53c2de7efb577d672952eee
3
+ size 1021999
models/vocabulary/co_vocabulary_metadata.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "language": "co",
3
- "vocabulary_size": 58612,
4
  "variant": "full",
5
  "statistics": {
6
- "type_token_ratio": 0.05464431503278916,
7
  "coverage": {
8
- "top_100": 0.4740403851170396,
9
- "top_1000": 0.6748029483890198,
10
- "top_5000": 0.8154347093397393,
11
- "top_10000": 0.8683801088705445
12
  },
13
- "hapax_count": 64770,
14
- "hapax_ratio": 0.5249550177497528,
15
- "total_documents": 8497
16
  }
17
  }
 
1
  {
2
  "language": "co",
3
+ "vocabulary_size": 58569,
4
  "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.0546978960200255,
7
  "coverage": {
8
+ "top_100": 0.4749617033193706,
9
+ "top_1000": 0.6754865351219446,
10
+ "top_5000": 0.8156472903409058,
11
+ "top_10000": 0.8684880687616513
12
  },
13
+ "hapax_count": 64869,
14
+ "hapax_ratio": 0.5255188839741408,
15
+ "total_documents": 8553
16
  }
17
  }
models/word_markov/co_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb1cae5d79a7a73adf2ff0919afeebd9f38f7943e4b16f5e68a2a24aa799f516
3
- size 5678726
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5150ee1468d1b94738c58ba68b8c04fd75f386fed28e6125e3e6599c4b3f12b1
3
+ size 5644828
models/word_markov/co_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "co",
5
- "unique_contexts": 123267,
6
- "total_transitions": 2249414
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "co",
5
+ "unique_contexts": 123322,
6
+ "total_transitions": 2248170
7
  }
models/word_markov/co_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:793e28fa70d170a16ec64307b53718d88a3f178234de84df35691f3c269d0ab2
3
- size 14184219
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eaea00576501f682e63b2bbe8e53bc759e0df3e510b85995cbbd17505b9aa10
3
+ size 14156294
models/word_markov/co_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "co",
5
- "unique_contexts": 688381,
6
- "total_transitions": 2240917
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "co",
5
+ "unique_contexts": 686898,
6
+ "total_transitions": 2239617
7
  }