Upload all models and assets for co (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +224 -191
- models/embeddings/aligned/co_128d.bin +3 -0
- models/embeddings/aligned/co_128d.meta.json +1 -0
- models/embeddings/aligned/co_128d.projection.npy +3 -0
- models/embeddings/aligned/co_128d_metadata.json +8 -0
- models/embeddings/aligned/co_32d.bin +3 -0
- models/embeddings/aligned/co_32d.meta.json +1 -0
- models/embeddings/aligned/co_32d.projection.npy +3 -0
- models/embeddings/aligned/co_32d_metadata.json +8 -0
- models/embeddings/aligned/co_64d.bin +3 -0
- models/embeddings/aligned/co_64d.meta.json +1 -0
- models/embeddings/aligned/co_64d.projection.npy +3 -0
- models/embeddings/aligned/co_64d_metadata.json +8 -0
- models/embeddings/monolingual/co_128d.bin +2 -2
- models/embeddings/monolingual/co_128d_metadata.json +1 -1
- models/embeddings/monolingual/co_32d.bin +2 -2
- models/embeddings/monolingual/co_32d_metadata.json +1 -1
- models/embeddings/monolingual/co_64d.bin +2 -2
- models/embeddings/monolingual/co_64d_metadata.json +1 -1
- models/subword_markov/co_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/co_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/co_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/co_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/co_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/co_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/co_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/co_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/co_2gram_subword.parquet +2 -2
- models/subword_ngram/co_2gram_subword_metadata.json +2 -2
- models/subword_ngram/co_3gram_subword.parquet +2 -2
- models/subword_ngram/co_3gram_subword_metadata.json +2 -2
- models/subword_ngram/co_4gram_subword.parquet +2 -2
- models/subword_ngram/co_4gram_subword_metadata.json +2 -2
- models/subword_ngram/co_5gram_subword.parquet +3 -0
- models/subword_ngram/co_5gram_subword_metadata.json +7 -0
- models/tokenizer/co_tokenizer_16k.model +2 -2
- models/tokenizer/co_tokenizer_16k.vocab +0 -0
- models/tokenizer/co_tokenizer_32k.model +2 -2
- models/tokenizer/co_tokenizer_32k.vocab +0 -0
- models/tokenizer/co_tokenizer_64k.model +2 -2
- models/tokenizer/co_tokenizer_64k.vocab +0 -0
- models/tokenizer/co_tokenizer_8k.model +2 -2
- models/tokenizer/co_tokenizer_8k.vocab +0 -0
- models/vocabulary/co_vocabulary.parquet +2 -2
- models/vocabulary/co_vocabulary_metadata.json +9 -9
- models/word_markov/co_markov_ctx1_word.parquet +2 -2
- models/word_markov/co_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/co_markov_ctx2_word.parquet +2 -2
- models/word_markov/co_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: co
|
| 3 |
-
language_name:
|
| 4 |
language_family: romance_galloitalic
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-romance_galloitalic
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,47 +90,47 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 3.
|
| 85 |
-
| **32k** | 3.
|
| 86 |
-
| **64k** | 4.
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
-
**Sample 1:** `
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
-
| 8k | `▁
|
| 97 |
-
| 16k | `▁
|
| 98 |
-
| 32k | `▁
|
| 99 |
-
| 64k | `▁
|
| 100 |
|
| 101 |
-
**Sample 2:** `
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
-
| 8k | `▁
|
| 106 |
-
| 16k | `▁
|
| 107 |
-
| 32k | `▁
|
| 108 |
-
| 64k | `▁
|
| 109 |
|
| 110 |
-
**Sample 3:** `
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
-
| 8k | `▁
|
| 115 |
-
| 16k | `▁
|
| 116 |
-
| 32k | `▁
|
| 117 |
-
| 64k | `▁
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
-
- **Best Compression:** 64k achieves 4.
|
| 123 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 137 |
|
| 138 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
-
| **2-gram** | Word | 9,
|
| 141 |
-
| **2-gram** | Subword |
|
| 142 |
-
| **3-gram** | Word | 24,
|
| 143 |
-
| **3-gram** | Subword | 1,
|
| 144 |
-
| **4-gram** | Word | 41,
|
| 145 |
-
| **4-gram** | Subword | 9,
|
|
|
|
|
|
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
|
@@ -150,21 +162,21 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 150 |
|
| 151 |
| Rank | N-gram | Count |
|
| 152 |
|------|--------|-------|
|
| 153 |
-
| 1 | `di u` | 18,
|
| 154 |
-
| 2 | `di a` | 18,
|
| 155 |
-
| 3 | `di l` | 13,
|
| 156 |
-
| 4 | `di i` | 10,
|
| 157 |
-
| 5 | `à u` | 9,
|
| 158 |
|
| 159 |
**3-grams (Word):**
|
| 160 |
|
| 161 |
| Rank | N-gram | Count |
|
| 162 |
|------|--------|-------|
|
| 163 |
| 1 | `a famiglia di` | 4,349 |
|
| 164 |
-
| 2 | `hè una spezia` | 3,
|
| 165 |
-
| 3 | `di a famiglia` | 2,
|
| 166 |
| 4 | `hè una pianta` | 2,612 |
|
| 167 |
-
| 5 | `una spezia di` | 2,
|
| 168 |
|
| 169 |
**4-grams (Word):**
|
| 170 |
|
|
@@ -172,46 +184,66 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 172 |
|------|--------|-------|
|
| 173 |
| 1 | `di a famiglia di` | 2,629 |
|
| 174 |
| 2 | `a famiglia di i` | 2,171 |
|
| 175 |
-
| 3 | `hè una spezia di` | 2,
|
| 176 |
| 4 | `annantu à wikimedia commons` | 1,945 |
|
| 177 |
-
| 5 | `à wikimedia commons di` | 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
-
| 1 | `i _` | 432,
|
| 184 |
-
| 2 | `a _` |
|
| 185 |
-
| 3 | `u _` |
|
| 186 |
-
| 4 | `_ d` | 246,
|
| 187 |
-
| 5 | `d i` |
|
| 188 |
|
| 189 |
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
-
| 1 | `_ d i` |
|
| 194 |
-
| 2 | `d i _` |
|
| 195 |
-
| 3 | `_ i n` | 82,
|
| 196 |
-
| 4 | `_ u _` | 81,
|
| 197 |
-
| 5 | `_ a _` |
|
| 198 |
|
| 199 |
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
-
| 1 | `_ d i _` | 143,
|
| 204 |
-
| 2 | `_ i n _` | 57,
|
| 205 |
-
| 3 | `a _ d i` | 45,
|
| 206 |
-
| 4 | `_ h è _` |
|
| 207 |
-
| 5 | `i _ d i` | 35,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
-
- **Best Perplexity:** 2-gram (subword) with
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 227 |
|
| 228 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
-
| **1** | Word | 0.
|
| 231 |
-
| **1** | Subword |
|
| 232 |
-
| **2** | Word | 0.
|
| 233 |
-
| **2** | Subword | 0.
|
| 234 |
-
| **3** | Word | 0.
|
| 235 |
-
| **3** | Subword | 0.
|
| 236 |
-
| **4** | Word | 0.
|
| 237 |
-
| **4** | Subword | 0.
|
| 238 |
|
| 239 |
### Generated Text Samples (Word-based)
|
| 240 |
|
|
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
-
1. `di
|
| 246 |
-
2. `u
|
| 247 |
-
3. `a
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
-
1. `di u
|
| 252 |
-
2. `di a
|
| 253 |
-
3. `di l
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
-
1. `a famiglia di
|
| 258 |
-
2. `hè una spezia
|
| 259 |
-
3. `di a famiglia di i
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
-
1. `di a famiglia di
|
| 264 |
-
2. `a famiglia di i
|
| 265 |
-
3. `hè una spezia di pianta
|
| 266 |
|
| 267 |
|
| 268 |
### Generated Text Samples (Subword-based)
|
|
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
-
1. `
|
| 275 |
-
2. `
|
| 276 |
-
3. `
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
-
1. `
|
| 281 |
-
2. `
|
| 282 |
-
3. `
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
-
1. `
|
| 287 |
-
2. `
|
| 288 |
-
3. `
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
-
1. `
|
| 293 |
-
2. `
|
| 294 |
-
3. `
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
- **Best Predictability:** Context-4 (word) with 93.8% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
@@ -314,64 +346,64 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
-
| Vocabulary Size | 58,
|
| 318 |
-
| Total Tokens | 2,
|
| 319 |
| Mean Frequency | 37.42 |
|
| 320 |
| Median Frequency | 4 |
|
| 321 |
-
| Frequency Std Dev | 979.
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
-
| 1 | di | 143,
|
| 328 |
-
| 2 | u | 84,
|
| 329 |
-
| 3 | a |
|
| 330 |
-
| 4 | è |
|
| 331 |
-
| 5 | in | 58,
|
| 332 |
-
| 6 | à | 58,
|
| 333 |
-
| 7 | l | 48,
|
| 334 |
-
| 8 | hè |
|
| 335 |
-
| 9 | i | 45,
|
| 336 |
-
| 10 | da | 24,
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
-
| 1 |
|
| 343 |
-
| 2 |
|
| 344 |
-
| 3 |
|
| 345 |
-
| 4 |
|
| 346 |
-
| 5 |
|
| 347 |
-
| 6 |
|
| 348 |
-
| 7 |
|
| 349 |
-
| 8 |
|
| 350 |
-
| 9 |
|
| 351 |
-
| 10 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
-
| Zipf Coefficient | 1.
|
| 358 |
-
| R² (Goodness of Fit) | 0.
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
-
| Top 100 | 48.
|
| 366 |
| Top 1,000 | 69.5% |
|
| 367 |
| Top 5,000 | 84.0% |
|
| 368 |
| Top 10,000 | 89.4% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
-
- **Zipf Compliance:** R²=0.
|
| 373 |
-
- **High Frequency Dominance:** Top 100 words cover 48.
|
| 374 |
-
- **Long Tail:** 48,
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 387 |
|
| 388 |
### 5.1 Cross-Lingual Alignment
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
### 5.2 Model Comparison
|
| 394 |
|
| 395 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
-
| **mono_32d** | 32 | 0.
|
| 398 |
-
| **mono_64d** | 64 | 0.
|
| 399 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 404 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 405 |
-
- **Alignment Quality:**
|
| 406 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
## 6. Morphological Analysis (Experimental)
|
| 410 |
|
| 411 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
-
|
| 413 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
|
| 415 |
### 6.1 Productivity & Complexity
|
| 416 |
|
| 417 |
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
|--------|-------|----------------|----------------|
|
| 419 |
-
| Productivity Index | **
|
| 420 |
-
| Idiomaticity Gap |
|
| 421 |
|
| 422 |
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
|
|
@@ -426,26 +461,24 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 426 |
#### Productive Prefixes
|
| 427 |
| Prefix | Examples |
|
| 428 |
|--------|----------|
|
| 429 |
-
| `-cu` |
|
| 430 |
-
| `-ca` |
|
| 431 |
-
| `-ri` |
|
| 432 |
-
| `-in` |
|
| 433 |
-
| `-pr` |
|
| 434 |
-
| `-
|
| 435 |
-
| `-di` | difendidori, differenziale, dicriscenti |
|
| 436 |
-
| `-pa` | pavillon, paola, parentella |
|
| 437 |
|
| 438 |
#### Productive Suffixes
|
| 439 |
| Suffix | Examples |
|
| 440 |
|--------|----------|
|
| 441 |
-
| `-
|
| 442 |
-
| `-
|
| 443 |
-
| `-
|
| 444 |
-
| `-e` |
|
| 445 |
-
| `-tu` |
|
| 446 |
-
| `-
|
| 447 |
-
| `-
|
| 448 |
-
| `-ta` |
|
| 449 |
|
| 450 |
### 6.3 Bound Stems (Lexical Roots)
|
| 451 |
|
|
@@ -453,18 +486,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 453 |
|
| 454 |
| Stem | Cohesion | Substitutability | Examples |
|
| 455 |
|------|----------|------------------|----------|
|
| 456 |
-
| `endu` | 2.
|
| 457 |
-
| `enti` | 1.
|
| 458 |
-
| `
|
| 459 |
-
| `aghj` | 1.
|
| 460 |
-
| `
|
| 461 |
-
| `
|
| 462 |
-
| `zion` | 1.
|
| 463 |
-
| `
|
| 464 |
-
| `
|
| 465 |
-
| `
|
| 466 |
-
| `
|
| 467 |
-
| `
|
| 468 |
|
| 469 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 470 |
|
|
@@ -472,16 +505,16 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
|
|
| 472 |
|
| 473 |
| Prefix | Suffix | Frequency | Examples |
|
| 474 |
|--------|--------|-----------|----------|
|
| 475 |
-
| `-cu` | `-
|
| 476 |
-
| `-cu` | `-
|
| 477 |
-
| `-ri` | `-
|
| 478 |
-
| `-
|
| 479 |
-
| `-
|
| 480 |
-
| `-
|
| 481 |
-
| `-ca` | `-
|
| 482 |
-
| `-
|
| 483 |
-
| `-ca` | `-
|
| 484 |
-
| `-
|
| 485 |
|
| 486 |
### 6.5 Recursive Morpheme Segmentation
|
| 487 |
|
|
@@ -489,26 +522,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 489 |
|
| 490 |
| Word | Suggested Split | Confidence | Stem |
|
| 491 |
|------|-----------------|------------|------|
|
| 492 |
-
|
|
| 493 |
-
|
|
| 494 |
-
|
|
| 495 |
-
|
|
| 496 |
-
|
|
| 497 |
-
|
|
| 498 |
-
|
|
| 499 |
-
|
|
| 500 |
-
|
|
| 501 |
-
|
|
| 502 |
-
|
|
| 503 |
-
|
|
| 504 |
-
|
|
| 505 |
-
|
|
| 506 |
-
|
|
| 507 |
|
| 508 |
### 6.6 Linguistic Interpretation
|
| 509 |
|
| 510 |
> **Automated Insight:**
|
| 511 |
-
The language
|
| 512 |
|
| 513 |
---
|
| 514 |
## 7. Summary & Recommendations
|
|
@@ -519,8 +552,8 @@ The language CO appears to be more isolating or has a highly fixed vocabulary. W
|
|
| 519 |
|
| 520 |
| Component | Recommended | Rationale |
|
| 521 |
|-----------|-------------|-----------|
|
| 522 |
-
| Tokenizer | **64k BPE** | Best compression (4.
|
| 523 |
-
| N-gram | **2-gram** | Lowest perplexity (
|
| 524 |
| Markov | **Context-4** | Highest predictability (93.8%) |
|
| 525 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 526 |
|
|
@@ -735,4 +768,4 @@ MIT License - Free for academic and commercial use.
|
|
| 735 |
---
|
| 736 |
*Generated by Wikilangs Models Pipeline*
|
| 737 |
|
| 738 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: co
|
| 3 |
+
language_name: Corsican
|
| 4 |
language_family: romance_galloitalic
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-romance_galloitalic
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.216
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8262
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Corsican - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Corsican** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.429x | 3.43 | 0.0264% | 363,461 |
|
| 94 |
+
| **16k** | 3.706x | 3.71 | 0.0285% | 336,335 |
|
| 95 |
+
| **32k** | 3.986x | 3.99 | 0.0307% | 312,675 |
|
| 96 |
+
| **64k** | 4.216x 🏆 | 4.22 | 0.0325% | 295,625 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Ophrys splendida hè una pianta chì face partita di a famiglia di l'orchidaceae. ...`
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁ophrys ▁sp len di da ▁hè ▁una ▁pianta ▁chì ▁face ... (+13 more)` | 23 |
|
| 107 |
+
| 16k | `▁ophrys ▁splen di da ▁hè ▁una ▁pianta ▁chì ▁face ▁partita ... (+12 more)` | 22 |
|
| 108 |
+
| 32k | `▁ophrys ▁splendi da ▁hè ▁una ▁pianta ▁chì ▁face ▁partita ▁di ... (+11 more)` | 21 |
|
| 109 |
+
| 64k | `▁ophrys ▁splendida ▁hè ▁una ▁pianta ▁chì ▁face ▁partita ▁di ▁a ... (+10 more)` | 20 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `U Mucale hè una cumuna di u dipartimentu di a Corsica suprana. Geografia Storia ...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁u ▁mu cale ▁hè ▁una ▁cumuna ▁di ▁u ▁dipartimentu ▁di ... (+14 more)` | 24 |
|
| 116 |
+
| 16k | `▁u ▁mu cale ▁hè ▁una ▁cumuna ▁di ▁u ▁dipartimentu ▁di ... (+14 more)` | 24 |
|
| 117 |
+
| 32k | `▁u ▁mucale ▁hè ▁una ▁cumuna ▁di ▁u ▁dipartimentu ▁di ▁a ... (+13 more)` | 23 |
|
| 118 |
+
| 64k | `▁u ▁mucale ▁hè ▁una ▁cumuna ▁di ▁u ▁dipartimentu ▁di ▁a ... (+13 more)` | 23 |
|
| 119 |
|
| 120 |
+
**Sample 3:** `L'Emilia è Romagna hè una regione taliana. taliana`
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁l ' e mi lia ▁è ▁roma gna ▁hè ▁una ... (+4 more)` | 14 |
|
| 125 |
+
| 16k | `▁l ' emi lia ▁è ▁roma gna ▁hè ▁una ▁regione ... (+3 more)` | 13 |
|
| 126 |
+
| 32k | `▁l ' emi lia ▁è ▁romagna ▁hè ▁una ▁regione ▁taliana ... (+2 more)` | 12 |
|
| 127 |
+
| 64k | `▁l ' emilia ▁è ▁romagna ▁hè ▁una ▁regione ▁taliana . ... (+1 more)` | 11 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.216x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0264% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 147 |
|
| 148 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 9,217 | 13.17 | 49,361 | 22.0% | 44.8% |
|
| 151 |
+
| **2-gram** | Subword | 220 🏆 | 7.78 | 3,170 | 71.3% | 99.6% |
|
| 152 |
+
| **3-gram** | Word | 24,245 | 14.57 | 83,032 | 11.2% | 30.7% |
|
| 153 |
+
| **3-gram** | Subword | 1,698 | 10.73 | 22,203 | 28.4% | 77.7% |
|
| 154 |
+
| **4-gram** | Word | 41,699 | 15.35 | 137,212 | 9.3% | 25.7% |
|
| 155 |
+
| **4-gram** | Subword | 9,000 | 13.14 | 106,299 | 13.9% | 42.6% |
|
| 156 |
+
| **5-gram** | Word | 36,326 | 15.15 | 111,629 | 9.3% | 26.7% |
|
| 157 |
+
| **5-gram** | Subword | 31,819 | 14.96 | 280,787 | 8.5% | 26.7% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
|
|
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
+
| 1 | `di u` | 18,692 |
|
| 166 |
+
| 2 | `di a` | 18,500 |
|
| 167 |
+
| 3 | `di l` | 13,231 |
|
| 168 |
+
| 4 | `di i` | 10,603 |
|
| 169 |
+
| 5 | `à u` | 9,233 |
|
| 170 |
|
| 171 |
**3-grams (Word):**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
| 1 | `a famiglia di` | 4,349 |
|
| 176 |
+
| 2 | `hè una spezia` | 3,359 |
|
| 177 |
+
| 3 | `di a famiglia` | 2,699 |
|
| 178 |
| 4 | `hè una pianta` | 2,612 |
|
| 179 |
+
| 5 | `una spezia di` | 2,290 |
|
| 180 |
|
| 181 |
**4-grams (Word):**
|
| 182 |
|
|
|
|
| 184 |
|------|--------|-------|
|
| 185 |
| 1 | `di a famiglia di` | 2,629 |
|
| 186 |
| 2 | `a famiglia di i` | 2,171 |
|
| 187 |
+
| 3 | `hè una spezia di` | 2,064 |
|
| 188 |
| 4 | `annantu à wikimedia commons` | 1,945 |
|
| 189 |
+
| 5 | `à wikimedia commons di` | 1,924 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `annantu à wikimedia commons di` | 1,924 |
|
| 196 |
+
| 2 | `à wikimedia commons di corsica` | 1,923 |
|
| 197 |
+
| 3 | `appartinendu à a famiglia di` | 1,506 |
|
| 198 |
+
| 4 | `flora corsica 2 ed edisud` | 1,421 |
|
| 199 |
+
| 5 | `d gamisans j flora corsica` | 1,419 |
|
| 200 |
|
| 201 |
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `i _` | 432,205 |
|
| 206 |
+
| 2 | `a _` | 403,888 |
|
| 207 |
+
| 3 | `u _` | 315,849 |
|
| 208 |
+
| 4 | `_ d` | 246,098 |
|
| 209 |
+
| 5 | `d i` | 216,563 |
|
| 210 |
|
| 211 |
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `_ d i` | 172,754 |
|
| 216 |
+
| 2 | `d i _` | 151,658 |
|
| 217 |
+
| 3 | `_ i n` | 82,722 |
|
| 218 |
+
| 4 | `_ u _` | 81,534 |
|
| 219 |
+
| 5 | `_ a _` | 73,027 |
|
| 220 |
|
| 221 |
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `_ d i _` | 143,050 |
|
| 226 |
+
| 2 | `_ i n _` | 57,478 |
|
| 227 |
+
| 3 | `a _ d i` | 45,041 |
|
| 228 |
+
| 4 | `_ h è _` | 45,025 |
|
| 229 |
+
| 5 | `i _ d i` | 35,043 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `a _ d i _` | 37,617 |
|
| 236 |
+
| 2 | `i _ d i _` | 29,786 |
|
| 237 |
+
| 3 | `u _ d i _` | 28,746 |
|
| 238 |
+
| 4 | `e _ d i _` | 24,400 |
|
| 239 |
+
| 5 | `i o n e _` | 21,123 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 220
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~27% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 259 |
|
| 260 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.8927 | 1.857 | 5.58 | 123,322 | 10.7% |
|
| 263 |
+
| **1** | Subword | 0.8627 | 1.818 | 6.97 | 1,238 | 13.7% |
|
| 264 |
+
| **2** | Word | 0.3106 | 1.240 | 1.80 | 686,898 | 68.9% |
|
| 265 |
+
| **2** | Subword | 0.9133 | 1.883 | 5.37 | 8,617 | 8.7% |
|
| 266 |
+
| **3** | Word | 0.1339 | 1.097 | 1.25 | 1,233,325 | 86.6% |
|
| 267 |
+
| **3** | Subword | 0.7817 | 1.719 | 3.96 | 46,221 | 21.8% |
|
| 268 |
+
| **4** | Word | 0.0623 🏆 | 1.044 | 1.10 | 1,539,570 | 93.8% |
|
| 269 |
+
| **4** | Subword | 0.6452 | 1.564 | 2.90 | 182,986 | 35.5% |
|
| 270 |
|
| 271 |
### Generated Text Samples (Word-based)
|
| 272 |
|
|
|
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `di tuda hè una spezia hè un missale rumanu mandatu pè a prutezzione di l isula`
|
| 278 |
+
2. `u calendariu gregorianu evenimenti nascite morte celebrazione feste i primi cristiani è l euru e zon...`
|
| 279 |
+
3. `a bellula chì faci cantà senza scoddhi e pratuline i bagni di 25 aprile di nettaru`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `di u mare à trasporti maritimi portivechju hà ancu statu cunnisciuta sottu u nomu simonu a casata`
|
| 284 |
+
2. `di a spagna un statu di spiritu turmintosa da veda dinò camisgia pilonu a camisgetta di corsica`
|
| 285 |
+
3. `di l europa occidentale di cipru di u bacinu mediterraniu induv ella hè ghjunta in alisgiani u`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `a famiglia di l orobanchaceae si distingui da i so grandi fiori gialli è arancini à forma di`
|
| 290 |
+
2. `hè una spezia largamente sparta in a so aria di ripartizioni eppuri certi pupulazioni poni essa mina...`
|
| 291 |
+
3. `di a famiglia di i brassicaceae si caratterizeghja da u so portu cispugliosu è cumpattu aghjunghjend...`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `di a famiglia di l arecaceae ed hè largamenti apprizzatu par a so biddezza è u so simbulu astrunomic...`
|
| 296 |
+
2. `a famiglia di i sapindaceae discrizzioni l acer negundo hè un arburi scascianti chì pò aghjunghja un...`
|
| 297 |
+
3. `hè una spezia di pianta chì faci parti di a famiglia di l hirundinidae descrizzione a rundinella cas...`
|
| 298 |
|
| 299 |
|
| 300 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_diri_25_à_di_d'`
|
| 307 |
+
2. `iori_hà_siceisu_`
|
| 308 |
+
3. `adia_puvezota_fi`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `i_re_culupula_à_s`
|
| 313 |
+
2. `a_ufoltrupatichar`
|
| 314 |
+
3. `u_à_ligna_culanea`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `_di_abbrunu,_cator`
|
| 319 |
+
2. `di_arbaceae._nore_`
|
| 320 |
+
3. `_induv'eddu;_annan`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `_di_yprestitudi_à_s`
|
| 325 |
+
2. `_in_amba_di_l'incen`
|
| 326 |
+
3. `a_di_l'aurolli_di_b`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
- **Best Predictability:** Context-4 (word) with 93.8% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (182,986 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 58,569 |
|
| 350 |
+
| Total Tokens | 2,191,854 |
|
| 351 |
| Mean Frequency | 37.42 |
|
| 352 |
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 979.31 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | di | 143,436 |
|
| 360 |
+
| 2 | u | 84,175 |
|
| 361 |
+
| 3 | a | 76,019 |
|
| 362 |
+
| 4 | è | 67,153 |
|
| 363 |
+
| 5 | in | 58,881 |
|
| 364 |
+
| 6 | à | 58,439 |
|
| 365 |
+
| 7 | l | 48,309 |
|
| 366 |
+
| 8 | hè | 46,050 |
|
| 367 |
+
| 9 | i | 45,085 |
|
| 368 |
+
| 10 | da | 24,609 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | hannovra | 2 |
|
| 375 |
+
| 2 | multifau | 2 |
|
| 376 |
+
| 3 | vendanges | 2 |
|
| 377 |
+
| 4 | voceratrice | 2 |
|
| 378 |
+
| 5 | paysage | 2 |
|
| 379 |
+
| 6 | coin | 2 |
|
| 380 |
+
| 7 | paysan | 2 |
|
| 381 |
+
| 8 | spezialità | 2 |
|
| 382 |
+
| 9 | alerta | 2 |
|
| 383 |
+
| 10 | ꦈꦠꦩ | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0566 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.997058 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 48.9% |
|
| 398 |
| Top 1,000 | 69.5% |
|
| 399 |
| Top 5,000 | 84.0% |
|
| 400 |
| Top 10,000 | 89.4% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9971 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 48.9% of corpus
|
| 406 |
+
- **Long Tail:** 48,569 words needed for remaining 10.6% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 419 |
|
| 420 |
### 5.1 Cross-Lingual Alignment
|
| 421 |
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
|
| 426 |
|
| 427 |
### 5.2 Model Comparison
|
| 428 |
|
| 429 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8262 🏆 | 0.3363 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8192 | 0.2582 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.7654 | 0.2010 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8262 | 0.3340 | 0.0540 | 0.2540 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8192 | 0.2633 | 0.0880 | 0.3460 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.7654 | 0.1975 | 0.1560 | 0.4960 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.8262 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2651. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 15.6% R@1 in cross-lingual retrieval.
|
| 443 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
## 6. Morphological Analysis (Experimental)
|
| 447 |
|
|
|
|
|
|
|
| 448 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
|
| 450 |
### 6.1 Productivity & Complexity
|
| 451 |
|
| 452 |
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **0.002** | Low formulaic content | - |
|
| 456 |
|
| 457 |
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
|
|
|
|
| 461 |
#### Productive Prefixes
|
| 462 |
| Prefix | Examples |
|
| 463 |
|--------|----------|
|
| 464 |
+
| `-cu` | cunfutà, cuddazioni, cuntera |
|
| 465 |
+
| `-ca` | castres, caprimulgus, calciu |
|
| 466 |
+
| `-ri` | rivede, rispettà, riurganizò |
|
| 467 |
+
| `-in` | ingegneri, incausà, indì |
|
| 468 |
+
| `-pr` | pridatori, privileghju, preferisci |
|
| 469 |
+
| `-di` | dinastìa, disintegra, dicennovi |
|
|
|
|
|
|
|
| 470 |
|
| 471 |
#### Productive Suffixes
|
| 472 |
| Suffix | Examples |
|
| 473 |
|--------|----------|
|
| 474 |
+
| `-i` | addevi, ingegneri, midianti |
|
| 475 |
+
| `-u` | spagnolu, belgiu, vòtu |
|
| 476 |
+
| `-a` | dinastìa, leucoraja, seduta |
|
| 477 |
+
| `-e` | rivede, uccidentale, marginale |
|
| 478 |
+
| `-tu` | vòtu, validatu, prisirvatu |
|
| 479 |
+
| `-ti` | midianti, rapprisintati, sminticati |
|
| 480 |
+
| `-ni` | cuddazioni, vogliini, cardini |
|
| 481 |
+
| `-ta` | seduta, atalanta, rota |
|
| 482 |
|
| 483 |
### 6.3 Bound Stems (Lexical Roots)
|
| 484 |
|
|
|
|
| 486 |
|
| 487 |
| Stem | Cohesion | Substitutability | Examples |
|
| 488 |
|------|----------|------------------|----------|
|
| 489 |
+
| `endu` | 2.14x | 73 contexts | fendu, vendu, dendu |
|
| 490 |
+
| `enti` | 1.81x | 118 contexts | nenti, denti, lenti |
|
| 491 |
+
| `igli` | 1.63x | 112 contexts | gigli, migli, cigli |
|
| 492 |
+
| `aghj` | 1.46x | 142 contexts | aghji, aghju, aghja |
|
| 493 |
+
| `glia` | 1.66x | 70 contexts | aglia, paglia, figlia |
|
| 494 |
+
| `azio` | 1.75x | 56 contexts | tazio, lazio, orazio |
|
| 495 |
+
| `zion` | 1.65x | 64 contexts | azione, nozione, lezioni |
|
| 496 |
+
| `ment` | 1.48x | 87 contexts | mente, menti, menta |
|
| 497 |
+
| `cors` | 1.80x | 33 contexts | corso, corsa, corse |
|
| 498 |
+
| `ific` | 1.57x | 45 contexts | pacific, unificò, unificà |
|
| 499 |
+
| `tura` | 1.38x | 62 contexts | datura, altura, natura |
|
| 500 |
+
| `sica` | 1.56x | 37 contexts | mùsica, fìsica, sicani |
|
| 501 |
|
| 502 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 503 |
|
|
|
|
| 505 |
|
| 506 |
| Prefix | Suffix | Frequency | Examples |
|
| 507 |
|--------|--------|-----------|----------|
|
| 508 |
+
| `-cu` | `-i` | 84 words | curteghji, cubiti |
|
| 509 |
+
| `-cu` | `-u` | 82 words | cuntestatu, cunvertitu |
|
| 510 |
+
| `-ri` | `-u` | 67 words | righjistru, riguardu |
|
| 511 |
+
| `-cu` | `-a` | 64 words | cultelleria, cunsacra |
|
| 512 |
+
| `-cu` | `-e` | 62 words | cundannate, cunstruzione |
|
| 513 |
+
| `-in` | `-u` | 61 words | ingombru, inchietu |
|
| 514 |
+
| `-ca` | `-a` | 59 words | calandra, cantata |
|
| 515 |
+
| `-in` | `-i` | 58 words | insufficienti, intarsizioni |
|
| 516 |
+
| `-ca` | `-u` | 58 words | caratteru, capistranu |
|
| 517 |
+
| `-pr` | `-i` | 56 words | preparazioni, prisintati |
|
| 518 |
|
| 519 |
### 6.5 Recursive Morpheme Segmentation
|
| 520 |
|
|
|
|
| 522 |
|
| 523 |
| Word | Suggested Split | Confidence | Stem |
|
| 524 |
|------|-----------------|------------|------|
|
| 525 |
+
| indibulitu | **`in-di-buli-tu`** | 7.5 | `buli` |
|
| 526 |
+
| dirighjitu | **`di-ri-ghji-tu`** | 7.5 | `ghji` |
|
| 527 |
+
| dimustrati | **`di-mustra-ti`** | 6.0 | `mustra` |
|
| 528 |
+
| ricustruisce | **`ri-cu-struisce`** | 6.0 | `struisce` |
|
| 529 |
+
| ricustruite | **`ri-cu-struite`** | 6.0 | `struite` |
|
| 530 |
+
| saturnianu | **`saturn-ia-nu`** | 6.0 | `saturn` |
|
| 531 |
+
| rivoltani | **`ri-volta-ni`** | 6.0 | `volta` |
|
| 532 |
+
| divenendu | **`di-venendu`** | 4.5 | `venendu` |
|
| 533 |
+
| indicheghjanu | **`in-di-cheghja-nu`** | 4.5 | `cheghja` |
|
| 534 |
+
| accupavanu | **`accupava-nu`** | 4.5 | `accupava` |
|
| 535 |
+
| granulita | **`granuli-ta`** | 4.5 | `granuli` |
|
| 536 |
+
| principionu | **`pr-in-cipio-nu`** | 4.5 | `cipio` |
|
| 537 |
+
| attaccani | **`attacca-ni`** | 4.5 | `attacca` |
|
| 538 |
+
| supranatu | **`suprana-tu`** | 4.5 | `suprana` |
|
| 539 |
+
| asciuvatu | **`asciuva-tu`** | 4.5 | `asciuva` |
|
| 540 |
|
| 541 |
### 6.6 Linguistic Interpretation
|
| 542 |
|
| 543 |
> **Automated Insight:**
|
| 544 |
+
The language Corsican shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 545 |
|
| 546 |
---
|
| 547 |
## 7. Summary & Recommendations
|
|
|
|
| 552 |
|
| 553 |
| Component | Recommended | Rationale |
|
| 554 |
|-----------|-------------|-----------|
|
| 555 |
+
| Tokenizer | **64k BPE** | Best compression (4.22x) |
|
| 556 |
+
| N-gram | **2-gram** | Lowest perplexity (220) |
|
| 557 |
| Markov | **Context-4** | Highest predictability (93.8%) |
|
| 558 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 559 |
|
|
|
|
| 768 |
---
|
| 769 |
*Generated by Wikilangs Models Pipeline*
|
| 770 |
|
| 771 |
+
*Report Date: 2026-01-03 20:37:45*
|
models/embeddings/aligned/co_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b1188259a56d403865faa99fa1350b00926f10763c1237aa3e872cced7601be
|
| 3 |
+
size 1056840398
|
models/embeddings/aligned/co_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "co", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/co_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea211f0fda570a4fac50984b5cec2e1159b1e3f2e86395f518eede63ccabc5da
|
| 3 |
+
size 65664
|
models/embeddings/aligned/co_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "co",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7516,
|
| 7 |
+
"vocab_size": 31527
|
| 8 |
+
}
|
models/embeddings/aligned/co_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95e90e81f99abdbfd12e0afed22a1557827ab877d1a3a61a584eb491afd1abeb
|
| 3 |
+
size 264627662
|
models/embeddings/aligned/co_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "co", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/co_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a26f04f573d7a17eb4b3498fa4df506e36707149738f9ed7355a9a36313b5cb9
|
| 3 |
+
size 4224
|
models/embeddings/aligned/co_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "co",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7516,
|
| 7 |
+
"vocab_size": 31527
|
| 8 |
+
}
|
models/embeddings/aligned/co_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8aa3c06a1b412d20ef8dcbd2588899da958ae3efc40cc8b841a5e601b9f6e95
|
| 3 |
+
size 528698574
|
models/embeddings/aligned/co_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "co", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/co_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1118cba50c88a05a3169c9b628b3c139e380b09637cfed076858f8d2a531505
|
| 3 |
+
size 16512
|
models/embeddings/aligned/co_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "co",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 7516,
|
| 7 |
+
"vocab_size": 31527
|
| 8 |
+
}
|
models/embeddings/monolingual/co_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b1188259a56d403865faa99fa1350b00926f10763c1237aa3e872cced7601be
|
| 3 |
+
size 1056840398
|
models/embeddings/monolingual/co_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 31527
|
| 15 |
}
|
models/embeddings/monolingual/co_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95e90e81f99abdbfd12e0afed22a1557827ab877d1a3a61a584eb491afd1abeb
|
| 3 |
+
size 264627662
|
models/embeddings/monolingual/co_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 31527
|
| 15 |
}
|
models/embeddings/monolingual/co_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8aa3c06a1b412d20ef8dcbd2588899da958ae3efc40cc8b841a5e601b9f6e95
|
| 3 |
+
size 528698574
|
models/embeddings/monolingual/co_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 31527
|
| 15 |
}
|
models/subword_markov/co_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ccba47788fdac20dbfe0dc14ede2e235d186ad963d505287d92784b261dc76f
|
| 3 |
+
size 71545
|
models/subword_markov/co_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_contexts": 1238,
|
| 6 |
+
"total_transitions": 13211308
|
| 7 |
}
|
models/subword_markov/co_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:755dec4f665ee36033a886b40d0259d4fa7d3ef9998d73c8e21b5586257d5116
|
| 3 |
+
size 382643
|
models/subword_markov/co_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_contexts": 8617,
|
| 6 |
+
"total_transitions": 13202755
|
| 7 |
}
|
models/subword_markov/co_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:627f6479b485a5eb7d1a5dba74948cad853724fa12e413e40fa722f8a3038f39
|
| 3 |
+
size 1491620
|
models/subword_markov/co_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_contexts": 46221,
|
| 6 |
+
"total_transitions": 13194202
|
| 7 |
}
|
models/subword_markov/co_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e5d1a220a544ac400dd2df144119c1304ce71a19475f2ddcbd8ee7e0030575b
|
| 3 |
+
size 4190273
|
models/subword_markov/co_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_contexts": 182986,
|
| 6 |
+
"total_transitions": 13185649
|
| 7 |
}
|
models/subword_ngram/co_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae24b051ed3af54f3565060e3552cd67a8d903e34ab258a4828b67ff9996b475
|
| 3 |
+
size 42374
|
models/subword_ngram/co_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_ngrams": 3170,
|
| 6 |
+
"total_ngrams": 13211308
|
| 7 |
}
|
models/subword_ngram/co_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76c849c163a5eb7e124f5b49aa5b539517b8c3d1e08b885e4b6de423a7f6d6da
|
| 3 |
+
size 283370
|
models/subword_ngram/co_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_ngrams": 22203,
|
| 6 |
+
"total_ngrams": 13202755
|
| 7 |
}
|
models/subword_ngram/co_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a3030923f89095c97a82d10b87ecd761efc7224def9c96d443f295f4f8d004a
|
| 3 |
+
size 1229873
|
models/subword_ngram/co_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_ngrams": 106299,
|
| 6 |
+
"total_ngrams": 13194202
|
| 7 |
}
|
models/subword_ngram/co_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6439a330150f404c738100e1929f3dda0f560c148608e1c019d12a7520a2e4d0
|
| 3 |
+
size 3273783
|
models/subword_ngram/co_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "co",
|
| 5 |
+
"unique_ngrams": 280787,
|
| 6 |
+
"total_ngrams": 13185649
|
| 7 |
+
}
|
models/tokenizer/co_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24b3fad0009298815c654db3ae8bb403f55f17281379bf6ee659a34f6c654a85
|
| 3 |
+
size 515937
|
models/tokenizer/co_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/co_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed439f585e2b42bfac5587d734a4dfc78dd34d7f9a2c031908d5b05136065565
|
| 3 |
+
size 803263
|
models/tokenizer/co_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/co_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6c942ef7778bdf767b712f27ad74e9b074e60f2430bd878560984dffdd15fa3
|
| 3 |
+
size 1384129
|
models/tokenizer/co_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/co_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:112936f030ea6a09d6e9e276c543e39a95b187e86bc60ea07bb2164cbddd0cbe
|
| 3 |
+
size 376417
|
models/tokenizer/co_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/co_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:508286f99a8790038e977d4e50f4780f9c94657fe53c2de7efb577d672952eee
|
| 3 |
+
size 1021999
|
models/vocabulary/co_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "co",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "co",
|
| 3 |
+
"vocabulary_size": 58569,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0546978960200255,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.4749617033193706,
|
| 9 |
+
"top_1000": 0.6754865351219446,
|
| 10 |
+
"top_5000": 0.8156472903409058,
|
| 11 |
+
"top_10000": 0.8684880687616513
|
| 12 |
},
|
| 13 |
+
"hapax_count": 64869,
|
| 14 |
+
"hapax_ratio": 0.5255188839741408,
|
| 15 |
+
"total_documents": 8553
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/co_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5150ee1468d1b94738c58ba68b8c04fd75f386fed28e6125e3e6599c4b3f12b1
|
| 3 |
+
size 5644828
|
models/word_markov/co_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_contexts": 123322,
|
| 6 |
+
"total_transitions": 2248170
|
| 7 |
}
|
models/word_markov/co_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9eaea00576501f682e63b2bbe8e53bc759e0df3e510b85995cbbd17505b9aa10
|
| 3 |
+
size 14156294
|
models/word_markov/co_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "co",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "co",
|
| 5 |
+
"unique_contexts": 686898,
|
| 6 |
+
"total_transitions": 2239617
|
| 7 |
}
|