Upload all models and assets for ca (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +347 -136
- models/embeddings/aligned/ca_128d.bin +3 -0
- models/embeddings/aligned/ca_128d.meta.json +1 -0
- models/embeddings/aligned/ca_128d.projection.npy +3 -0
- models/embeddings/aligned/ca_128d_metadata.json +8 -0
- models/embeddings/aligned/ca_32d.bin +3 -0
- models/embeddings/aligned/ca_32d.meta.json +1 -0
- models/embeddings/aligned/ca_32d.projection.npy +3 -0
- models/embeddings/aligned/ca_32d_metadata.json +8 -0
- models/embeddings/aligned/ca_64d.bin +3 -0
- models/embeddings/aligned/ca_64d.meta.json +1 -0
- models/embeddings/aligned/ca_64d.projection.npy +3 -0
- models/embeddings/aligned/ca_64d_metadata.json +8 -0
- models/embeddings/monolingual/ca_128d.bin +2 -2
- models/embeddings/monolingual/ca_128d_metadata.json +5 -3
- models/embeddings/monolingual/ca_32d.bin +2 -2
- models/embeddings/monolingual/ca_32d_metadata.json +5 -3
- models/embeddings/monolingual/ca_64d.bin +2 -2
- models/embeddings/monolingual/ca_64d_metadata.json +5 -3
- models/subword_markov/ca_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/ca_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/ca_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/ca_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/ca_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/ca_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/ca_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/ca_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/ca_2gram_subword.parquet +2 -2
- models/subword_ngram/ca_2gram_subword_metadata.json +2 -2
- models/subword_ngram/ca_3gram_subword.parquet +2 -2
- models/subword_ngram/ca_3gram_subword_metadata.json +2 -2
- models/subword_ngram/ca_4gram_subword.parquet +2 -2
- models/subword_ngram/ca_4gram_subword_metadata.json +2 -2
- models/subword_ngram/ca_5gram_subword.parquet +3 -0
- models/subword_ngram/ca_5gram_subword_metadata.json +7 -0
- models/tokenizer/ca_tokenizer_16k.model +2 -2
- models/tokenizer/ca_tokenizer_16k.vocab +0 -0
- models/tokenizer/ca_tokenizer_32k.model +2 -2
- models/tokenizer/ca_tokenizer_32k.vocab +0 -0
- models/tokenizer/ca_tokenizer_64k.model +2 -2
- models/tokenizer/ca_tokenizer_64k.vocab +0 -0
- models/tokenizer/ca_tokenizer_8k.model +2 -2
- models/tokenizer/ca_tokenizer_8k.vocab +0 -0
- models/vocabulary/ca_vocabulary.parquet +2 -2
- models/vocabulary/ca_vocabulary_metadata.json +10 -9
- models/vocabulary/ca_vocabulary_top.parquet +3 -0
- models/vocabulary/ca_vocabulary_top_metadata.json +20 -0
- models/word_markov/ca_markov_ctx1_word.parquet +2 -2
- models/word_markov/ca_markov_ctx1_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-romance_galloitalic
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,14 +33,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# Catalan - Wikilangs Models
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,53 +80,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** | 4.
|
| 78 |
-
| **64k** | 4.
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:** `
|
| 85 |
|
| 86 |
| Vocab | Tokens | Count |
|
| 87 |
|-------|--------|-------|
|
| 88 |
-
| 8k | `▁
|
| 89 |
-
| 16k | `▁
|
| 90 |
-
| 32k | `▁
|
| 91 |
-
| 64k | `▁
|
| 92 |
|
| 93 |
-
**Sample 2:** `
|
| 94 |
-
Estheria (dí...`
|
| 95 |
|
| 96 |
| Vocab | Tokens | Count |
|
| 97 |
|-------|--------|-------|
|
| 98 |
-
| 8k | `▁
|
| 99 |
-
| 16k | `▁
|
| 100 |
-
| 32k | `▁
|
| 101 |
-
| 64k | `▁
|
| 102 |
|
| 103 |
-
**Sample 3:** `
|
| 104 |
-
Torneig de tennis femení: S...`
|
| 105 |
|
| 106 |
| Vocab | Tokens | Count |
|
| 107 |
|-------|--------|-------|
|
| 108 |
-
| 8k | `▁torneig ▁de ▁ten nis ▁mascul í : ▁
|
| 109 |
-
| 16k | `▁torneig ▁de ▁tennis ▁masculí : ▁
|
| 110 |
-
| 32k | `▁
|
| 111 |
-
| 64k | `▁
|
| 112 |
|
| 113 |
|
| 114 |
### Key Findings
|
| 115 |
|
| 116 |
-
- **Best Compression:** 64k achieves 4.
|
| 117 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 118 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 119 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 120 |
|
|
@@ -123,57 +139,111 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 123 |
|
| 124 |

|
| 125 |
|
|
|
|
|
|
|
| 126 |

|
| 127 |
|
| 128 |
### Results
|
| 129 |
|
| 130 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 131 |
-
|
| 132 |
-
| **2-gram** |
|
| 133 |
-
| **2-gram** |
|
| 134 |
-
| **3-gram** | 1,
|
| 135 |
-
| **3-gram** | 2,
|
| 136 |
-
| **4-gram** | 4,
|
| 137 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 138 |
|
| 139 |
### Top 5 N-grams by Size
|
| 140 |
|
| 141 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
| Rank | N-gram | Count |
|
| 144 |
|------|--------|-------|
|
| 145 |
-
| 1 | `
|
| 146 |
-
| 2 | `d
|
| 147 |
-
| 3 | `
|
| 148 |
-
| 4 | `
|
| 149 |
-
| 5 | `a
|
| 150 |
|
| 151 |
-
**
|
| 152 |
|
| 153 |
| Rank | N-gram | Count |
|
| 154 |
|------|--------|-------|
|
| 155 |
-
| 1 | `
|
| 156 |
-
| 2 | `
|
| 157 |
-
| 3 |
|
| 158 |
-
| 4 |
|
| 159 |
-
| 5 | `d
|
| 160 |
|
| 161 |
-
**
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
-
| 1 |
|
| 166 |
-
| 2 |
|
| 167 |
-
| 3 | `
|
| 168 |
-
| 4 |
|
| 169 |
-
| 5 | `d
|
| 170 |
|
| 171 |
|
| 172 |
### Key Findings
|
| 173 |
|
| 174 |
-
- **Best Perplexity:** 2-gram with
|
| 175 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 176 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 177 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 178 |
|
| 179 |
---
|
|
@@ -181,55 +251,86 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 181 |
|
| 182 |

|
| 183 |
|
|
|
|
|
|
|
| 184 |

|
| 185 |
|
| 186 |
### Results
|
| 187 |
|
| 188 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 189 |
-
|
| 190 |
-
| **1** | 0.
|
| 191 |
-
| **1** |
|
| 192 |
-
| **2** | 0.
|
| 193 |
-
| **2** | 0.
|
| 194 |
-
| **3** | 0.
|
| 195 |
-
| **3** | 0.
|
| 196 |
-
| **4** | 0.
|
| 197 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
### Generated Text Samples
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
| 202 |
|
| 203 |
**Context Size 1:**
|
| 204 |
|
| 205 |
-
1. `
|
| 206 |
-
2.
|
| 207 |
-
3.
|
| 208 |
|
| 209 |
**Context Size 2:**
|
| 210 |
|
| 211 |
-
1. `
|
| 212 |
-
2. `
|
| 213 |
-
3. `
|
| 214 |
|
| 215 |
**Context Size 3:**
|
| 216 |
|
| 217 |
-
1. `
|
| 218 |
-
2. `
|
| 219 |
-
3.
|
| 220 |
|
| 221 |
**Context Size 4:**
|
| 222 |
|
| 223 |
-
1.
|
| 224 |
-
2.
|
| 225 |
-
3. `
|
| 226 |
|
| 227 |
|
| 228 |
### Key Findings
|
| 229 |
|
| 230 |
-
- **Best Predictability:** Context-4 with
|
| 231 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 232 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 233 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 234 |
|
| 235 |
---
|
|
@@ -245,64 +346,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 245 |
|
| 246 |
| Metric | Value |
|
| 247 |
|--------|-------|
|
| 248 |
-
| Vocabulary Size | 1,
|
| 249 |
-
| Total Tokens |
|
| 250 |
-
| Mean Frequency |
|
| 251 |
-
| Median Frequency |
|
| 252 |
-
| Frequency Std Dev |
|
| 253 |
|
| 254 |
### Most Common Words
|
| 255 |
|
| 256 |
| Rank | Word | Frequency |
|
| 257 |
|------|------|-----------|
|
| 258 |
-
| 1 | de |
|
| 259 |
-
| 2 | la | 12,
|
| 260 |
-
| 3 | i | 9,
|
| 261 |
-
| 4 | a | 9,
|
| 262 |
-
| 5 | el | 8,
|
| 263 |
-
| 6 | l | 6,
|
| 264 |
-
| 7 | d |
|
| 265 |
-
| 8 | en | 5,
|
| 266 |
-
| 9 | del | 5,
|
| 267 |
-
| 10 | que | 4,
|
| 268 |
|
| 269 |
### Least Common Words (from vocabulary)
|
| 270 |
|
| 271 |
| Rank | Word | Frequency |
|
| 272 |
|------|------|-----------|
|
| 273 |
-
| 1 |
|
| 274 |
-
| 2 |
|
| 275 |
-
| 3 |
|
| 276 |
-
| 4 |
|
| 277 |
-
| 5 |
|
| 278 |
-
| 6 |
|
| 279 |
-
| 7 |
|
| 280 |
-
| 8 |
|
| 281 |
-
| 9 |
|
| 282 |
-
| 10 |
|
| 283 |
|
| 284 |
### Zipf's Law Analysis
|
| 285 |
|
| 286 |
| Metric | Value |
|
| 287 |
|--------|-------|
|
| 288 |
-
| Zipf Coefficient | 1.
|
| 289 |
-
| R² (Goodness of Fit) | 0.
|
| 290 |
| Adherence Quality | **excellent** |
|
| 291 |
|
| 292 |
### Coverage Analysis
|
| 293 |
|
| 294 |
| Top N Words | Coverage |
|
| 295 |
|-------------|----------|
|
| 296 |
-
| Top 100 |
|
| 297 |
-
| Top 1,000 | 63.
|
| 298 |
| Top 5,000 | 78.5% |
|
| 299 |
-
| Top 10,000 | 84.
|
| 300 |
|
| 301 |
### Key Findings
|
| 302 |
|
| 303 |
-
- **Zipf Compliance:** R²=0.
|
| 304 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 305 |
-
- **Long Tail:**
|
| 306 |
|
| 307 |
---
|
| 308 |
## 5. Word Embeddings Evaluation
|
|
@@ -315,24 +416,131 @@ Below are text samples generated from each Markov chain model:
|
|
| 315 |
|
| 316 |

|
| 317 |
|
| 318 |
-
### Model Comparison
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
### Key Findings
|
| 328 |
|
| 329 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 330 |
-
- **
|
| 331 |
-
- **
|
| 332 |
-
- **Recommendation:**
|
| 333 |
|
| 334 |
---
|
| 335 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |

|
| 338 |
|
|
@@ -340,11 +548,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 340 |
|
| 341 |
| Component | Recommended | Rationale |
|
| 342 |
|-----------|-------------|-----------|
|
| 343 |
-
| Tokenizer | **
|
| 344 |
-
| N-gram | **
|
| 345 |
-
| Markov | **Context-4** | Highest predictability (
|
| 346 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 347 |
|
|
|
|
| 348 |
---
|
| 349 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 350 |
|
|
@@ -534,7 +743,8 @@ If you use these models in your research, please cite:
|
|
| 534 |
author = {Kamali, Omar},
|
| 535 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 536 |
year = {2025},
|
| 537 |
-
|
|
|
|
| 538 |
url = {https://huggingface.co/wikilangs}
|
| 539 |
institution = {Omneity Labs}
|
| 540 |
}
|
|
@@ -550,7 +760,8 @@ MIT License - Free for academic and commercial use.
|
|
| 550 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 551 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 552 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 553 |
---
|
| 554 |
*Generated by Wikilangs Models Pipeline*
|
| 555 |
|
| 556 |
-
*Report Date:
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-romance_galloitalic
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.448
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.7469
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-08
|
| 44 |
---
|
| 45 |
|
| 46 |
# Catalan - Wikilangs Models
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.608x | 3.61 | 0.1295% | 3,980,202 |
|
| 94 |
+
| **16k** | 3.955x | 3.96 | 0.1420% | 3,630,953 |
|
| 95 |
+
| **32k** | 4.237x | 4.24 | 0.1521% | 3,389,435 |
|
| 96 |
+
| **64k** | 4.448x 🏆 | 4.45 | 0.1597% | 3,228,954 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Llista de topònims (noms propis de lloc) del municipi de Capmany, a l'Alt Empord...`
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁llista ▁de ▁topònims ▁( nom s ▁propis ▁de ▁lloc ) ... (+13 more)` | 23 |
|
| 107 |
+
| 16k | `▁llista ▁de ▁topònims ▁( nom s ▁propis ▁de ▁lloc ) ... (+13 more)` | 23 |
|
| 108 |
+
| 32k | `▁llista ▁de ▁topònims ▁( nom s ▁propis ▁de ▁lloc ) ... (+12 more)` | 22 |
|
| 109 |
+
| 64k | `▁llista ▁de ▁topònims ▁( noms ▁propis ▁de ▁lloc ) ▁del ... (+10 more)` | 20 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `Trànsportni (Krasnodar), poble del krai de Krasnodar, a Rússia Trànsportni (Maga...`
|
|
|
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁tr àn s port ni ▁( k ras n od ... (+39 more)` | 49 |
|
| 116 |
+
| 16k | `▁tràn sport ni ▁( k ras n od ar ), ... (+33 more)` | 43 |
|
| 117 |
+
| 32k | `▁tràn sport ni ▁( k ras n odar ), ▁poble ... (+27 more)` | 37 |
|
| 118 |
+
| 64k | `▁tràn sport ni ▁( k ras n odar ), ▁poble ... (+25 more)` | 35 |
|
| 119 |
|
| 120 |
+
**Sample 3:** `Torneigs de tennis masculí: Serbia Open (ATP 250) Belgrade Open (ATP 250) Tornei...`
|
|
|
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁torneig s ▁de ▁ten nis ▁mascul í : ▁ser bia ... (+44 more)` | 54 |
|
| 125 |
+
| 16k | `▁torneig s ▁de ▁tennis ▁masculí : ▁ser bia ▁open ▁( ... (+38 more)` | 48 |
|
| 126 |
+
| 32k | `▁torneigs ▁de ▁tennis ▁masculí : ▁ser bia ▁open ▁( atp ... (+34 more)` | 44 |
|
| 127 |
+
| 64k | `▁torneigs ▁de ▁tennis ▁masculí : ▁ser bia ▁open ▁( atp ... (+33 more)` | 43 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.448x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.1295% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 139 |
|
| 140 |

|
| 141 |
|
| 142 |
+

|
| 143 |
+
|
| 144 |

|
| 145 |
|
| 146 |
### Results
|
| 147 |
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 167,717 | 17.36 | 4,576,334 | 10.6% | 23.4% |
|
| 151 |
+
| **2-gram** | Subword | 262 🏆 | 8.03 | 41,609 | 69.0% | 98.9% |
|
| 152 |
+
| **3-gram** | Word | 1,409,334 | 20.43 | 13,479,698 | 2.7% | 10.3% |
|
| 153 |
+
| **3-gram** | Subword | 2,211 | 11.11 | 288,734 | 29.3% | 72.4% |
|
| 154 |
+
| **4-gram** | Word | 4,798,593 | 22.19 | 27,616,287 | 1.8% | 7.6% |
|
| 155 |
+
| **4-gram** | Subword | 13,232 | 13.69 | 1,676,138 | 14.2% | 40.2% |
|
| 156 |
+
| **5-gram** | Word | 4,523,219 | 22.11 | 21,934,897 | 2.3% | 8.8% |
|
| 157 |
+
| **5-gram** | Subword | 58,187 | 15.83 | 6,034,155 | 7.7% | 24.2% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `de la` | 3,892,352 |
|
| 166 |
+
| 2 | `a la` | 1,832,648 |
|
| 167 |
+
| 3 | `de l` | 1,806,800 |
|
| 168 |
+
| 4 | `a l` | 1,007,338 |
|
| 169 |
+
| 5 | `de les` | 998,964 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `de la seva` | 186,164 |
|
| 176 |
+
| 2 | `per a la` | 131,594 |
|
| 177 |
+
| 3 | `referències enllaços externs` | 121,418 |
|
| 178 |
+
| 4 | `la pel lícula` | 114,682 |
|
| 179 |
+
| 5 | `d octubre de` | 112,980 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `de kitt peak spacewatch` | 78,569 |
|
| 186 |
+
| 2 | `de la universitat de` | 56,957 |
|
| 187 |
+
| 3 | `que hi havia el` | 55,303 |
|
| 188 |
+
| 4 | `segons el cens del` | 47,569 |
|
| 189 |
+
| 5 | `de la família dels` | 44,734 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `el nombre mitjà de persones` | 43,284 |
|
| 196 |
+
| 2 | `el següent diagrama mostra les` | 42,548 |
|
| 197 |
+
| 3 | `següent diagrama mostra les poblacions` | 42,548 |
|
| 198 |
+
| 4 | `diagrama mostra les poblacions més` | 42,542 |
|
| 199 |
+
| 5 | `mostra les poblacions més properes` | 42,497 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `a _` | 65,660,325 |
|
| 206 |
+
| 2 | `s _` | 52,744,093 |
|
| 207 |
+
| 3 | `_ d` | 49,682,099 |
|
| 208 |
+
| 4 | `e _` | 42,364,044 |
|
| 209 |
+
| 5 | `d e` | 41,208,775 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `_ d e` | 35,468,647 |
|
| 216 |
+
| 2 | `d e _` | 24,280,649 |
|
| 217 |
+
| 3 | `e s _` | 19,244,620 |
|
| 218 |
+
| 4 | `e l _` | 15,094,409 |
|
| 219 |
+
| 5 | `l a _` | 14,700,214 |
|
| 220 |
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `_ d e _` | 23,793,570 |
|
| 226 |
+
| 2 | `_ l a _` | 12,534,324 |
|
| 227 |
+
| 3 | `_ e l _` | 8,556,406 |
|
| 228 |
+
| 4 | `s _ d e` | 7,523,945 |
|
| 229 |
+
| 5 | `d e _ l` | 7,343,393 |
|
| 230 |
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
|
| 233 |
| Rank | N-gram | Count |
|
| 234 |
|------|--------|-------|
|
| 235 |
+
| 1 | `_ d e _ l` | 7,323,223 |
|
| 236 |
+
| 2 | `_ d e l _` | 5,191,709 |
|
| 237 |
+
| 3 | `s _ d e _` | 5,107,850 |
|
| 238 |
+
| 4 | `_ q u e _` | 4,821,740 |
|
| 239 |
+
| 5 | `a _ d e _` | 4,540,758 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 262
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~24% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 251 |
|
| 252 |

|
| 253 |
|
| 254 |
+

|
| 255 |
+
|
| 256 |

|
| 257 |
|
| 258 |
### Results
|
| 259 |
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.9702 | 1.959 | 13.70 | 3,298,751 | 3.0% |
|
| 263 |
+
| **1** | Subword | 0.8467 | 1.798 | 7.10 | 30,691 | 15.3% |
|
| 264 |
+
| **2** | Word | 0.4478 | 1.364 | 2.95 | 45,099,512 | 55.2% |
|
| 265 |
+
| **2** | Subword | 0.5676 | 1.482 | 3.72 | 217,960 | 43.2% |
|
| 266 |
+
| **3** | Word | 0.2425 | 1.183 | 1.66 | 133,056,441 | 75.8% |
|
| 267 |
+
| **3** | Subword | 0.6293 | 1.547 | 3.86 | 810,473 | 37.1% |
|
| 268 |
+
| **4** | Word | 0.1249 🏆 | 1.090 | 1.26 | 221,190,469 | 87.5% |
|
| 269 |
+
| **4** | Subword | 0.6563 | 1.576 | 3.56 | 3,128,822 | 34.4% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `de maig de la temporada l acceptació de muntar una muralla i el molí de la`
|
| 278 |
+
2. `la població comunicació de encara que alemanya i des de la computació sent l estat substituïda`
|
| 279 |
+
3. `i no són esmentats anteriorment icv el símbol del psoe des de guilgameix que un comerç`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `de la guerra di mario tronti i no solament va trobar que era del 5è al 16è`
|
| 284 |
+
2. `a la taula de composició amb la seva història general del magistrat monetari c cassi a la`
|
| 285 |
+
3. `de l expedició del virrei un germà gran del poble ulldeconencs o ulldeconins són coneguts com a`
|
| 286 |
+
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `de la seva carrera periodística escrivint col laboracions a joves intel lectuals pertanyents a l alt...`
|
| 290 |
+
2. `per a la secció de filosofia i ciències socials en les seves obligacions amb la seguretat i el`
|
| 291 |
+
3. `referències enllaços externs fira festa de la pasqua hayivky el casament vessilia o ladkannya de la ...`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
+
|
| 295 |
+
1. `de kitt peak spacewatch 8 de novembre de parcak i mumford del 8 de novembre de militants del flec`
|
| 296 |
+
2. `de la universitat de salamanca honoris causa per la universitat christian albrecht de kiel de la uni...`
|
| 297 |
+
3. `que hi havia el 1 era una gran superfície de material de bricolatge 1 una botiga de congelats 1`
|
| 298 |
|
|
|
|
| 299 |
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_daral_euílere_s`
|
| 307 |
+
2. `eivinde_ditel'hi`
|
| 308 |
+
3. `agraweros._ome_2`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `a_ses_va_únivenci`
|
| 313 |
+
2. `s_als_(rdor_reu_d`
|
| 314 |
+
3. `_d'ofegria_amb_o_`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `_de_bre_seteodent_`
|
| 319 |
+
2. `de_la_de_col·locia`
|
| 320 |
+
3. `es_pres,_nastorals`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `_de_doble_(a_−_batx`
|
| 325 |
+
2. `_la_de_fan_es_va_ca`
|
| 326 |
+
3. `_el_donar_les_si_es`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 87.5% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (3,128,822 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 1,490,582 |
|
| 350 |
+
| Total Tokens | 372,231,757 |
|
| 351 |
+
| Mean Frequency | 249.72 |
|
| 352 |
+
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 29623.92 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | de | 23,862,515 |
|
| 360 |
+
| 2 | la | 12,874,088 |
|
| 361 |
+
| 3 | i | 9,923,035 |
|
| 362 |
+
| 4 | a | 9,593,194 |
|
| 363 |
+
| 5 | el | 8,820,173 |
|
| 364 |
+
| 6 | l | 6,195,164 |
|
| 365 |
+
| 7 | d | 5,995,004 |
|
| 366 |
+
| 8 | en | 5,534,785 |
|
| 367 |
+
| 9 | del | 5,257,995 |
|
| 368 |
+
| 10 | que | 4,926,945 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | binaritruncat | 2 |
|
| 375 |
+
| 2 | fanerozoiques | 2 |
|
| 376 |
+
| 3 | biòmers | 2 |
|
| 377 |
+
| 4 | nianzhi | 2 |
|
| 378 |
+
| 5 | fuching | 2 |
|
| 379 |
+
| 6 | mndm | 2 |
|
| 380 |
+
| 7 | cpsf | 2 |
|
| 381 |
+
| 8 | preestàndard | 2 |
|
| 382 |
+
| 9 | sweetshop | 2 |
|
| 383 |
+
| 10 | whakaata | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0222 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.996032 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 45.0% |
|
| 398 |
+
| Top 1,000 | 63.8% |
|
| 399 |
| Top 5,000 | 78.5% |
|
| 400 |
+
| Top 10,000 | 84.2% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9960 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 45.0% of corpus
|
| 406 |
+
- **Long Tail:** 1,480,582 words needed for remaining 15.8% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 416 |
|
| 417 |

|
| 418 |
|
|
|
|
| 419 |
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.7469 🏆 | 0.3896 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.7390 | 0.2972 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.6902 | 0.2374 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.7469 | 0.3696 | 0.4960 | 0.8360 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.7390 | 0.3068 | 0.7200 | 0.9380 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.6902 | 0.2443 | 0.8320 | 0.9720 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.7469 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.3075. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 83.2% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.637** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-ca` | canadàwilliam, cancells, callissot |
|
| 465 |
+
| `-co` | compsopogon, corlea, constitutionem |
|
| 466 |
+
| `-ma` | matricarina, masaraga, massai |
|
| 467 |
+
|
| 468 |
+
#### Productive Suffixes
|
| 469 |
+
| Suffix | Examples |
|
| 470 |
+
|--------|----------|
|
| 471 |
+
| `-s` | pomacèntrids, pentalobulars, quiotas |
|
| 472 |
+
| `-a` | matricarina, arduinna, yarima |
|
| 473 |
+
| `-es` | asfèriques, biomatemàtiques, quies |
|
| 474 |
+
| `-en` | grieneisen, robien, tensionen |
|
| 475 |
+
| `-is` | rufistrigalis, reaccionaris, catàrsis |
|
| 476 |
+
| `-ia` | praskóvia, llògia, orogenia |
|
| 477 |
+
| `-ta` | lucasta, samudragupta, lisetita |
|
| 478 |
+
|
| 479 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 480 |
+
|
| 481 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 482 |
+
|
| 483 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 484 |
+
|------|----------|------------------|----------|
|
| 485 |
+
| `nter` | 1.39x | 729 contexts | inter, anter, únter |
|
| 486 |
+
| `efer` | 1.66x | 177 contexts | kefer, lefer, defer |
|
| 487 |
+
| `uerr` | 1.61x | 153 contexts | uerra, guerr, duerr |
|
| 488 |
+
| `espr` | 1.73x | 95 contexts | esprî, despr, esprai |
|
| 489 |
+
| `stru` | 1.32x | 389 contexts | strum, struk, strus |
|
| 490 |
+
| `rson` | 1.46x | 205 contexts | rsona, arson, urson |
|
| 491 |
+
| `ient` | 1.31x | 364 contexts | rient, oient, lient |
|
| 492 |
+
| `lmen` | 1.57x | 122 contexts | ulmen, ilmen, olmen |
|
| 493 |
+
| `rinc` | 1.48x | 147 contexts | rinck, rincó, rinca |
|
| 494 |
+
| `ènci` | 1.57x | 107 contexts | ència, mència, lència |
|
| 495 |
+
| `embr` | 1.33x | 234 contexts | membr, embre, embry |
|
| 496 |
+
| `onst` | 1.42x | 159 contexts | onsta, konst, const |
|
| 497 |
+
|
| 498 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 499 |
+
|
| 500 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 501 |
+
|
| 502 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 503 |
+
|--------|--------|-----------|----------|
|
| 504 |
+
| `-co` | `-s` | 48 words | conventos, conservadors |
|
| 505 |
+
| `-ma` | `-a` | 45 words | masicka, macclureana |
|
| 506 |
+
| `-ca` | `-s` | 40 words | callolepis, cambyses |
|
| 507 |
+
| `-co` | `-a` | 35 words | comunera, costanzana |
|
| 508 |
+
| `-ma` | `-s` | 33 words | mahates, maktens |
|
| 509 |
+
| `-ca` | `-a` | 30 words | camborda, cardellina |
|
| 510 |
+
| `-co` | `-es` | 14 words | congoatlàntiques, colomates |
|
| 511 |
+
| `-ca` | `-es` | 11 words | cambyses, calcídies |
|
| 512 |
+
| `-ma` | `-es` | 9 words | mahates, masies |
|
| 513 |
+
| `-ma` | `-ta` | 9 words | magnesiodumortierita, malwatta |
|
| 514 |
+
|
| 515 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 516 |
+
|
| 517 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 518 |
+
|
| 519 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 520 |
+
|------|-----------------|------------|------|
|
| 521 |
+
| guerrista | **`guerr-is-ta`** | 6.0 | `guerr` |
|
| 522 |
+
| whitlockita | **`whitlocki-ta`** | 4.5 | `whitlocki` |
|
| 523 |
+
| assumptionis | **`assumption-is`** | 4.5 | `assumption` |
|
| 524 |
+
| zumacales | **`zumacal-es`** | 4.5 | `zumacal` |
|
| 525 |
+
| raperswilen | **`raperswil-en`** | 4.5 | `raperswil` |
|
| 526 |
+
| antinomies | **`antinomi-es`** | 4.5 | `antinomi` |
|
| 527 |
+
| reglamentaren | **`reglamentar-en`** | 4.5 | `reglamentar` |
|
| 528 |
+
| remarcaria | **`remarcar-ia`** | 4.5 | `remarcar` |
|
| 529 |
+
| reichsfürsten | **`reichsfürst-en`** | 4.5 | `reichsfürst` |
|
| 530 |
+
| deflectores | **`deflector-es`** | 4.5 | `deflector` |
|
| 531 |
+
| produeixen | **`produeix-en`** | 4.5 | `produeix` |
|
| 532 |
+
| autoadjuntes | **`autoadjunt-es`** | 4.5 | `autoadjunt` |
|
| 533 |
+
| subministraria | **`subministrar-ia`** | 4.5 | `subministrar` |
|
| 534 |
+
| barbertonita | **`barbertoni-ta`** | 4.5 | `barbertoni` |
|
| 535 |
+
| balsameres | **`balsamer-es`** | 4.5 | `balsamer` |
|
| 536 |
+
|
| 537 |
+
### 6.6 Linguistic Interpretation
|
| 538 |
+
|
| 539 |
+
> **Automated Insight:**
|
| 540 |
+
The language Catalan shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 541 |
+
|
| 542 |
+
---
|
| 543 |
+
## 7. Summary & Recommendations
|
| 544 |
|
| 545 |

|
| 546 |
|
|
|
|
| 548 |
|
| 549 |
| Component | Recommended | Rationale |
|
| 550 |
|-----------|-------------|-----------|
|
| 551 |
+
| Tokenizer | **64k BPE** | Best compression (4.45x) |
|
| 552 |
+
| N-gram | **2-gram** | Lowest perplexity (262) |
|
| 553 |
+
| Markov | **Context-4** | Highest predictability (87.5%) |
|
| 554 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 555 |
|
| 556 |
+
|
| 557 |
---
|
| 558 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 559 |
|
|
|
|
| 743 |
author = {Kamali, Omar},
|
| 744 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 745 |
year = {2025},
|
| 746 |
+
doi = {10.5281/zenodo.18073153},
|
| 747 |
+
publisher = {Zenodo},
|
| 748 |
url = {https://huggingface.co/wikilangs}
|
| 749 |
institution = {Omneity Labs}
|
| 750 |
}
|
|
|
|
| 760 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 761 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 762 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 763 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 764 |
---
|
| 765 |
*Generated by Wikilangs Models Pipeline*
|
| 766 |
|
| 767 |
+
*Report Date: 2026-01-08 03:10:53*
|
models/embeddings/aligned/ca_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24a1e4df40a3066dc73fa3b9c563fc1f4e8fb90e1aee1858380c3d7bd8a8e8a3
|
| 3 |
+
size 2501686884
|
models/embeddings/aligned/ca_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ca", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ca_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:802d4468d1f385670eaeb49471e886b448ff5e09a77dcb77154c3337c462986c
|
| 3 |
+
size 65664
|
models/embeddings/aligned/ca_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ca",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 338419,
|
| 7 |
+
"vocab_size": 1417503
|
| 8 |
+
}
|
models/embeddings/aligned/ca_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7090d8847bec43a8a16f3caa2e657c0f40a895cd63a132dcd601abb6499dd545
|
| 3 |
+
size 645044580
|
models/embeddings/aligned/ca_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ca", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ca_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4959f123eccf2b23e091c2a6c906c37ee6fffc5f512fc10722aabe48d584a75
|
| 3 |
+
size 4224
|
models/embeddings/aligned/ca_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ca",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 338419,
|
| 7 |
+
"vocab_size": 1417503
|
| 8 |
+
}
|
models/embeddings/aligned/ca_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1880e73b0ed8f1e8ab616846d81db2396794ec49a6ebb244f50960fe73ff693c
|
| 3 |
+
size 1263925348
|
models/embeddings/aligned/ca_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ca", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ca_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66569971bcebdb0f2bcfc3f5a476d7a05b75dc3989f9453416de8a30ce89ca1c
|
| 3 |
+
size 16512
|
models/embeddings/aligned/ca_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ca",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 338419,
|
| 7 |
+
"vocab_size": 1417503
|
| 8 |
+
}
|
models/embeddings/monolingual/ca_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24a1e4df40a3066dc73fa3b9c563fc1f4e8fb90e1aee1858380c3d7bd8a8e8a3
|
| 3 |
+
size 2501686884
|
models/embeddings/monolingual/ca_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1417503
|
| 15 |
}
|
models/embeddings/monolingual/ca_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7090d8847bec43a8a16f3caa2e657c0f40a895cd63a132dcd601abb6499dd545
|
| 3 |
+
size 645044580
|
models/embeddings/monolingual/ca_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1417503
|
| 15 |
}
|
models/embeddings/monolingual/ca_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1880e73b0ed8f1e8ab616846d81db2396794ec49a6ebb244f50960fe73ff693c
|
| 3 |
+
size 1263925348
|
models/embeddings/monolingual/ca_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1417503
|
| 15 |
}
|
models/subword_markov/ca_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9eff07200d9975dea253fe43de601f122185e6a96985c26c438b63afaaf9acb1
|
| 3 |
+
size 1393281
|
models/subword_markov/ca_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_contexts": 30691,
|
| 6 |
+
"total_transitions": 2170761675
|
| 7 |
}
|
models/subword_markov/ca_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca5c5b1e54ae39698e5cacc14cec34cbf702e677bf2e32ec6603b6841603a6fa
|
| 3 |
+
size 6606050
|
models/subword_markov/ca_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_contexts": 217960,
|
| 6 |
+
"total_transitions": 2169979038
|
| 7 |
}
|
models/subword_markov/ca_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db35fc8ef584d59df2ee3752ca547611bb3f3a2bd606eb85c0dc6fc242d5e672
|
| 3 |
+
size 25408651
|
models/subword_markov/ca_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_contexts": 810473,
|
| 6 |
+
"total_transitions": 2169196401
|
| 7 |
}
|
models/subword_markov/ca_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2396047321998b3d2609f25bf3a10d651f28323cbf9cb2bde8269322c726d3ef
|
| 3 |
+
size 90579198
|
models/subword_markov/ca_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_contexts": 3128822,
|
| 6 |
+
"total_transitions": 2168413764
|
| 7 |
}
|
models/subword_ngram/ca_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8436fa1ec5955cb730f5246fc40eabfe83d8b9edf3339cb07157ca799560b084
|
| 3 |
+
size 590509
|
models/subword_ngram/ca_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_ngrams": 41609,
|
| 6 |
+
"total_ngrams": 2170761675
|
| 7 |
}
|
models/subword_ngram/ca_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96f568707811cc9639e19837002c41df6be438a465ba2d78ffab6ff9e0b94288
|
| 3 |
+
size 3621792
|
models/subword_ngram/ca_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_ngrams": 288734,
|
| 6 |
+
"total_ngrams": 2169979038
|
| 7 |
}
|
models/subword_ngram/ca_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f51c3b0800498bf443c8ecbf8324c285828c177a16f9e740b0dd747334b77dc4
|
| 3 |
+
size 20638377
|
models/subword_ngram/ca_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_ngrams": 1676138,
|
| 6 |
+
"total_ngrams": 2169196401
|
| 7 |
}
|
models/subword_ngram/ca_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ace21b62f81448899fa83f82e04ede8337828b8fc9fa347420bff131c37d5b8e
|
| 3 |
+
size 74421040
|
models/subword_ngram/ca_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "ca",
|
| 5 |
+
"unique_ngrams": 6034155,
|
| 6 |
+
"total_ngrams": 2168413764
|
| 7 |
+
}
|
models/tokenizer/ca_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09cedc3c99d8c1bf292ffebd251dd5c3ad9de85c2f453e3e2832994834c283b8
|
| 3 |
+
size 511401
|
models/tokenizer/ca_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ca_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b22bc0012e3d4b698e9d9f2caf992c456c9a549b663b1a55d05642a0f73648b
|
| 3 |
+
size 790628
|
models/tokenizer/ca_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ca_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88d889048650ea6a5950b07988fd2f76716015504f0d365d9a6ca927d6f5e1da
|
| 3 |
+
size 1358262
|
models/tokenizer/ca_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ca_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b638ce04790bb844a2400a620c30328aac4bd967de91839673382a6537634870
|
| 3 |
+
size 374334
|
models/tokenizer/ca_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/ca_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b996ac5d5b1626b076abdc107b305b912677f3186fb9bcc303dcc216d8153a3e
|
| 3 |
+
size 22533215
|
models/vocabulary/ca_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "ca",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "ca",
|
| 3 |
+
"vocabulary_size": 1490582,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0088238088631879,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.4481618941219131,
|
| 9 |
+
"top_1000": 0.6351444736313012,
|
| 10 |
+
"top_5000": 0.7810939031610028,
|
| 11 |
+
"top_10000": 0.8379540286860089
|
| 12 |
},
|
| 13 |
+
"hapax_count": 1809890,
|
| 14 |
+
"hapax_ratio": 0.5483730811835398,
|
| 15 |
+
"total_documents": 782637
|
| 16 |
}
|
| 17 |
}
|
models/vocabulary/ca_vocabulary_top.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc7c0f73dc675fec3ea36f344213a6fef18fac8c3db6daba687f6e5b5ce59583
|
| 3 |
+
size 15047767
|
models/vocabulary/ca_vocabulary_top_metadata.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ca",
|
| 3 |
+
"vocabulary_size": 1000000,
|
| 4 |
+
"variant": "top",
|
| 5 |
+
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0088238088631879,
|
| 7 |
+
"coverage": {
|
| 8 |
+
"top_100": 0.4481618941219131,
|
| 9 |
+
"top_1000": 0.6351444736313012,
|
| 10 |
+
"top_5000": 0.7810939031610028,
|
| 11 |
+
"top_10000": 0.8379540286860089
|
| 12 |
+
},
|
| 13 |
+
"hapax_count": 1809890,
|
| 14 |
+
"hapax_ratio": 0.5483730811835398,
|
| 15 |
+
"total_documents": 782637,
|
| 16 |
+
"top_vocab_size": 1000000,
|
| 17 |
+
"coverage_ratio": 0.9923944164431507,
|
| 18 |
+
"tokens_excluded": 490582
|
| 19 |
+
}
|
| 20 |
+
}
|
models/word_markov/ca_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96435b63dd567ae47be848bf59b2c094743cf70cb0fef7e47e6b333c23332b3a
|
| 3 |
+
size 388066360
|
models/word_markov/ca_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ca",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ca",
|
| 5 |
+
"unique_contexts": 3298751,
|
| 6 |
+
"total_transitions": 373259010
|
| 7 |
}
|