omarkamali commited on
Commit
47f320d
·
verified ·
1 Parent(s): 984d0e1

Upload all models and assets for bs (20251001)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +311 -142
  2. models/embeddings/monolingual/bs_128d.bin +2 -2
  3. models/embeddings/monolingual/bs_128d_metadata.json +5 -3
  4. models/embeddings/monolingual/bs_32d.bin +2 -2
  5. models/embeddings/monolingual/bs_32d_metadata.json +5 -3
  6. models/embeddings/monolingual/bs_64d.bin +2 -2
  7. models/embeddings/monolingual/bs_64d_metadata.json +5 -3
  8. models/subword_markov/bs_markov_ctx1_subword.parquet +2 -2
  9. models/subword_markov/bs_markov_ctx1_subword_metadata.json +2 -2
  10. models/subword_markov/bs_markov_ctx2_subword.parquet +2 -2
  11. models/subword_markov/bs_markov_ctx2_subword_metadata.json +2 -2
  12. models/subword_markov/bs_markov_ctx3_subword.parquet +2 -2
  13. models/subword_markov/bs_markov_ctx3_subword_metadata.json +2 -2
  14. models/subword_markov/bs_markov_ctx4_subword.parquet +2 -2
  15. models/subword_markov/bs_markov_ctx4_subword_metadata.json +2 -2
  16. models/subword_ngram/bs_2gram_subword.parquet +2 -2
  17. models/subword_ngram/bs_2gram_subword_metadata.json +2 -2
  18. models/subword_ngram/bs_3gram_subword.parquet +2 -2
  19. models/subword_ngram/bs_3gram_subword_metadata.json +2 -2
  20. models/subword_ngram/bs_4gram_subword.parquet +2 -2
  21. models/subword_ngram/bs_4gram_subword_metadata.json +2 -2
  22. models/tokenizer/bs_tokenizer_16k.model +2 -2
  23. models/tokenizer/bs_tokenizer_16k.vocab +0 -0
  24. models/tokenizer/bs_tokenizer_32k.model +2 -2
  25. models/tokenizer/bs_tokenizer_32k.vocab +0 -0
  26. models/tokenizer/bs_tokenizer_64k.model +2 -2
  27. models/tokenizer/bs_tokenizer_64k.vocab +0 -0
  28. models/tokenizer/bs_tokenizer_8k.model +2 -2
  29. models/tokenizer/bs_tokenizer_8k.vocab +0 -0
  30. models/vocabulary/bs_vocabulary.parquet +2 -2
  31. models/vocabulary/bs_vocabulary_metadata.json +10 -9
  32. models/word_markov/bs_markov_ctx1_word.parquet +2 -2
  33. models/word_markov/bs_markov_ctx1_word_metadata.json +2 -2
  34. models/word_markov/bs_markov_ctx2_word.parquet +2 -2
  35. models/word_markov/bs_markov_ctx2_word_metadata.json +2 -2
  36. models/word_markov/bs_markov_ctx3_word.parquet +2 -2
  37. models/word_markov/bs_markov_ctx3_word_metadata.json +2 -2
  38. models/word_markov/bs_markov_ctx4_word.parquet +2 -2
  39. models/word_markov/bs_markov_ctx4_word_metadata.json +2 -2
  40. models/word_ngram/bs_2gram_word.parquet +2 -2
  41. models/word_ngram/bs_2gram_word_metadata.json +2 -2
  42. models/word_ngram/bs_3gram_word.parquet +2 -2
  43. models/word_ngram/bs_3gram_word_metadata.json +2 -2
  44. models/word_ngram/bs_4gram_word.parquet +2 -2
  45. models/word_ngram/bs_4gram_word_metadata.json +2 -2
  46. visualizations/embedding_isotropy.png +0 -0
  47. visualizations/embedding_norms.png +0 -0
  48. visualizations/embedding_similarity.png +2 -2
  49. visualizations/markov_branching.png +0 -0
  50. visualizations/markov_contexts.png +0 -0
README.md CHANGED
@@ -23,14 +23,14 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.389
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.6746
30
  - name: vocabulary_size
31
  type: vocab
32
- value: 558155
33
- generated: 2025-12-28
34
  ---
35
 
36
  # BS - Wikilangs Models
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
- - N-gram models (2, 3, 4-gram)
48
- - Markov chains (context of 1, 2, 3 and 4)
49
  - Subword N-gram and Markov chains
50
- - Embeddings in various sizes and dimensions
51
  - Language Vocabulary
52
  - Language Statistics
 
53
  ![Performance Dashboard](visualizations/performance_dashboard.png)
54
 
55
  ### Analysis and Evaluation
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
59
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
60
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
61
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
62
- - [6. Summary & Recommendations](#6-summary--recommendations)
 
63
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
64
  - [Visualizations Index](#visualizations-index)
65
 
@@ -68,60 +70,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
68
 
69
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
70
 
 
 
 
 
 
 
71
  ### Results
72
 
73
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
74
  |------------|-------------|---------------|----------|--------------|
75
- | **8k** | 3.441x | 3.41 | 0.1222% | 1,452,315 |
76
- | **16k** | 3.798x | 3.76 | 0.1349% | 1,315,871 |
77
- | **32k** | 4.122x | 4.08 | 0.1464% | 1,212,400 |
78
- | **64k** | 4.389x 🏆 | 4.35 | 0.1559% | 1,138,483 |
79
 
80
  ### Tokenization Examples
81
 
82
  Below are sample sentences tokenized with each vocabulary size:
83
 
84
- **Sample 1:** `Bovan je naseljeno mjesto u općini Rudo, Bosna i Hercegovina.
85
-
86
- Stanovništvo
87
-
88
- ...`
89
 
90
  | Vocab | Tokens | Count |
91
  |-------|--------|-------|
92
- | 8k | `▁bo van jenaseljenomjestouopćinirudo , ▁bosna ... (+11 more)` | 21 |
93
- | 16k | `▁bo van jenaseljenomjestouopćinirudo ,bosna ... (+11 more)` | 21 |
94
- | 32k | `▁bo van jenaseljenomjestouopćinirudo ,bosna ... (+11 more)` | 21 |
95
- | 64k | `▁bo van jenaseljenomjestouopćinirudo ,bosna ... (+11 more)` | 21 |
96
 
97
- **Sample 2:** `Rovna je naseljeno mjesto u općini Bugojno, Bosna i Hercegovina.
98
-
99
- Stanovništvo ...`
100
 
101
  | Vocab | Tokens | Count |
102
  |-------|--------|-------|
103
- | 8k | `▁ro vnaje ▁naseljeno ▁mjesto ▁u ▁općini ▁bu go jno ... (+15 more)` | 25 |
104
- | 16k | `▁ro vnaje ▁naseljeno ▁mjesto ▁u ▁općini ▁bugo jno , ... (+13 more)` | 23 |
105
- | 32k | `▁ro vnaje ▁naseljeno ▁mjesto ▁u ▁općini ▁bugojno , bosna ... (+11 more)` | 21 |
106
- | 64k | `▁ro vnaje ▁naseljeno ▁mjesto ▁u ▁općini ▁bugojno , ▁bosna ... (+11 more)` | 21 |
107
-
108
- **Sample 3:** `Hrvatska:
109
 
110
- Novoselo Bilajsko, naselje grada Gospića, Ličko-senjska županija
111
- No...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
- | 8k | `▁hrvatska :novo se lobila jsko , naseljegrada ... (+29 more)` | 39 |
116
- | 16k | `▁hrvatska :novo se lobila jsko , naseljegrada ... (+27 more)` | 37 |
117
- | 32k | `▁hrvatska :novo selobila jsko , naseljegradagospi ... (+21 more)` | 31 |
118
- | 64k | `▁hrvatska :novo selobila jsko , naseljegradagospića ... (+18 more)` | 28 |
119
 
120
 
121
  ### Key Findings
122
 
123
- - **Best Compression:** 64k achieves 4.389x compression
124
- - **Lowest UNK Rate:** 8k with 0.1222% unknown tokens
125
  - **Trade-off:** Larger vocabularies improve compression but increase model size
126
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
127
 
@@ -130,57 +129,89 @@ Below are sample sentences tokenized with each vocabulary size:
130
 
131
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
132
 
 
 
133
  ![N-gram Coverage](visualizations/ngram_coverage.png)
134
 
135
  ### Results
136
 
137
- | N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
138
- |--------|------------|---------|----------------|------------------|-------------------|
139
- | **2-gram** | 65,516 🏆 | 16.00 | 866,401 | 11.3% | 32.8% |
140
- | **2-gram** | 391 🏆 | 8.61 | 13,004 | 58.5% | 98.1% |
141
- | **3-gram** | 147,841 | 17.17 | 1,540,282 | 7.3% | 27.1% |
142
- | **3-gram** | 3,957 | 11.95 | 136,436 | 19.2% | 60.6% |
143
- | **4-gram** | 238,725 | 17.86 | 2,663,711 | 7.3% | 27.1% |
144
- | **4-gram** | 25,994 | 14.67 | 960,072 | 8.3% | 29.6% |
145
 
146
  ### Top 5 N-grams by Size
147
 
148
- **2-grams:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
  | Rank | N-gram | Count |
151
  |------|--------|-------|
152
- | 1 | `kategorija :` | 276,348 |
153
- | 2 | `. godine` | 129,207 |
154
- | 3 | `0 ,` | 126,589 |
155
- | 4 | `) ,` | 106,390 |
156
- | 5 | `galaksija (` | 105,937 |
157
 
158
- **3-grams:**
159
 
160
  | Rank | N-gram | Count |
161
  |------|--------|-------|
162
- | 1 | `spiralna galaksija (` | 75,074 |
163
- | 2 | `reference vanjski linkovi` | 44,816 |
164
- | 3 | `objekti kategorija :` | 43,868 |
165
- | 4 | `. godine .` | 40,322 |
166
- | 5 | `ngc / ic` | 40,009 |
167
 
168
- **4-grams:**
169
 
170
  | Rank | N-gram | Count |
171
  |------|--------|-------|
172
- | 1 | `prečkasta spiralna galaksija (` | 26,935 |
173
- | 2 | `kategorija : naselja u` | 26,641 |
174
- | 3 | `vanjski linkovi kategorija :` | 21,329 |
175
- | 4 | `reference vanjski linkovi kategorija` | 19,302 |
176
- | 5 | `spiralna galaksija ( s0` | 15,207 |
 
 
 
 
 
 
 
 
 
 
177
 
178
 
179
  ### Key Findings
180
 
181
- - **Best Perplexity:** 2-gram with 391
182
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
183
- - **Coverage:** Top-1000 patterns cover ~30% of corpus
184
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
185
 
186
  ---
@@ -188,55 +219,86 @@ Below are sample sentences tokenized with each vocabulary size:
188
 
189
  ![Markov Entropy](visualizations/markov_entropy.png)
190
 
 
 
191
  ![Markov Branching](visualizations/markov_branching.png)
192
 
193
  ### Results
194
 
195
- | Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
196
- |---------|-------------|------------|------------------|-----------------|----------------|
197
- | **1** | 0.7933 | 1.733 | 7.93 | 1,327,715 | 20.7% |
198
- | **1** | 1.1910 | 2.283 | 9.62 | 3,680 | 0.0% |
199
- | **2** | 0.3580 | 1.282 | 2.20 | 10,525,382 | 64.2% |
200
- | **2** | 1.0115 | 2.016 | 7.35 | 35,380 | 0.0% |
201
- | **3** | 0.1428 | 1.104 | 1.32 | 23,101,514 | 85.7% |
202
- | **3** | 1.0489 | 2.069 | 5.94 | 260,071 | 0.0% |
203
- | **4** | 0.0616 🏆 | 1.044 | 1.12 | 30,570,937 | 93.8% |
204
- | **4** | 0.9074 🏆 | 1.876 | 3.99 | 1,544,375 | 9.3% |
205
 
206
- ### Generated Text Samples
207
 
208
- Below are text samples generated from each Markov chain model:
209
 
210
  **Context Size 1:**
211
 
212
- 1. `. tako noseći na strani , 9 . karijera muzička adaptacija sezone , danska . u`
213
- 2. `, vinište se može značajno veći gradovi domaćini , koju je nešto što povećava kako se`
214
- 3. `i imigranti su uzrokovali su naseljeno mjesto u glavu , pamuk se sastojale su počeli provaljivati`
215
 
216
  **Context Size 2:**
217
 
218
- 1. `kategorija : nukleinske kiseline . kasnije je ( ) jedan od 50 američkih saveznih država , teritorija`
219
- 2. `. godine . najbliži tome je podjela na : mehri - muedždžel ( odgođeni ) . datum`
220
- 3. `0 , 000291 * p , gdje je m = 12 , 9 l nanolitar nl nl`
221
 
222
  **Context Size 3:**
223
 
224
- 1. `spiralna galaksija ( sbc ) ngc 672 0 , 99 % bakterija u crijevima buba . oskar je`
225
- 2. `objekti kategorija : iras objekti kategorija : astronomski objekti otkriveni 1885 . ‎`
226
- 3. `reference vanjski linkovi copa américa na zvaničnoj stranici uefa - e european championship 1980 , r...`
227
 
228
  **Context Size 4:**
229
 
230
- 1. `prečkasta spiralna galaksija ( sbb ) također pogledajte novi opći katalog spisak ic objekata spisak ...`
231
- 2. `kategorija : naselja u gorenjskoj regiji kategorija : naselja u podravskoj regiji kategorija : nasel...`
232
- 3. `vanjski linkovi kategorija : naselja u savinjskoj regiji kategorija : naselja u splitsko - dalmatins...`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
 
234
 
235
  ### Key Findings
236
 
237
- - **Best Predictability:** Context-4 with 93.8% predictability
238
  - **Branching Factor:** Decreases with context size (more deterministic)
239
- - **Memory Trade-off:** Larger contexts require more storage (1,544,375 contexts)
240
  - **Recommendation:** Context-3 or Context-4 for text generation
241
 
242
  ---
@@ -252,64 +314,64 @@ Below are text samples generated from each Markov chain model:
252
 
253
  | Metric | Value |
254
  |--------|-------|
255
- | Vocabulary Size | 558,155 |
256
- | Total Tokens | 35,712,013 |
257
- | Mean Frequency | 63.98 |
258
  | Median Frequency | 4 |
259
- | Frequency Std Dev | 2712.06 |
260
 
261
  ### Most Common Words
262
 
263
  | Rank | Word | Frequency |
264
  |------|------|-----------|
265
- | 1 | i | 952,586 |
266
- | 2 | je | 934,949 |
267
- | 3 | u | 930,575 |
268
- | 4 | na | 461,115 |
269
- | 5 | se | 405,379 |
270
- | 6 | su | 294,193 |
271
- | 7 | 1 | 286,740 |
272
- | 8 | kategorija | 277,314 |
273
- | 9 | od | 273,253 |
274
- | 10 | za | 268,536 |
275
 
276
  ### Least Common Words (from vocabulary)
277
 
278
  | Rank | Word | Frequency |
279
  |------|------|-----------|
280
- | 1 | 14678519 | 2 |
281
- | 2 | esac | 2 |
282
- | 3 | dkp256 | 2 |
283
- | 4 | catchshortfilm | 2 |
284
- | 5 | martirosyan | 2 |
285
- | 6 | neuzimanje | 2 |
286
- | 7 | spekarski | 2 |
287
- | 8 | probabilizamski | 2 |
288
- | 9 | setap | 2 |
289
- | 10 | visoravani | 2 |
290
 
291
  ### Zipf's Law Analysis
292
 
293
  | Metric | Value |
294
  |--------|-------|
295
- | Zipf Coefficient | 0.9865 |
296
- | R² (Goodness of Fit) | 0.998665 |
297
  | Adherence Quality | **excellent** |
298
 
299
  ### Coverage Analysis
300
 
301
  | Top N Words | Coverage |
302
  |-------------|----------|
303
- | Top 100 | 30.9% |
304
- | Top 1,000 | 53.0% |
305
- | Top 5,000 | 68.7% |
306
- | Top 10,000 | 75.5% |
307
 
308
  ### Key Findings
309
 
310
- - **Zipf Compliance:** R²=0.9987 indicates excellent adherence to Zipf's law
311
- - **High Frequency Dominance:** Top 100 words cover 30.9% of corpus
312
- - **Long Tail:** 548,155 words needed for remaining 24.5% coverage
313
 
314
  ---
315
  ## 5. Word Embeddings Evaluation
@@ -322,24 +384,128 @@ Below are text samples generated from each Markov chain model:
322
 
323
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
324
 
325
- ### Model Comparison
326
 
327
- | Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
328
- |-------|------------|-----------|----------|----------|----------|
329
- | **mono_32d** | 371,696 | 32 | 4.146 | 1.829 | 0.6746 🏆 |
330
- | **mono_64d** | 371,696 | 64 | 4.579 | 1.739 | 0.6582 |
331
- | **mono_128d** | 371,696 | 128 | 5.121 | 1.629 | 0.6288 |
332
- | **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
 
 
 
 
 
 
333
 
334
  ### Key Findings
335
 
336
- - **Best Isotropy:** mono_32d with 0.6746 (more uniform distribution)
337
- - **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
338
- - **Vocabulary Coverage:** All models cover 371,696 words
339
- - **Recommendation:** 100d for balanced semantic capture and efficiency
340
 
341
  ---
342
- ## 6. Summary & Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343
 
344
  ![Performance Dashboard](visualizations/performance_dashboard.png)
345
 
@@ -347,11 +513,12 @@ Below are text samples generated from each Markov chain model:
347
 
348
  | Component | Recommended | Rationale |
349
  |-----------|-------------|-----------|
350
- | Tokenizer | **32k BPE** | Best compression (4.39x) with low UNK rate |
351
- | N-gram | **5-gram** | Lowest perplexity (391) |
352
- | Markov | **Context-4** | Highest predictability (93.8%) |
353
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
354
 
 
355
  ---
356
  ## Appendix: Metrics Glossary & Interpretation Guide
357
 
@@ -541,7 +708,8 @@ If you use these models in your research, please cite:
541
  author = {Kamali, Omar},
542
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
543
  year = {2025},
544
- publisher = {HuggingFace},
 
545
  url = {https://huggingface.co/wikilangs}
546
  institution = {Omneity Labs}
547
  }
@@ -557,7 +725,8 @@ MIT License - Free for academic and commercial use.
557
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
558
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
559
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
 
560
  ---
561
  *Generated by Wikilangs Models Pipeline*
562
 
563
- *Report Date: 2025-12-28 09:16:14*
 
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
+ value: 4.707
27
  - name: best_isotropy
28
  type: isotropy
29
+ value: 0.6837
30
  - name: vocabulary_size
31
  type: vocab
32
+ value: 0
33
+ generated: 2026-01-03
34
  ---
35
 
36
  # BS - Wikilangs Models
 
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
+ - N-gram models (2, 3, 4, 5-gram)
48
+ - Markov chains (context of 1, 2, 3, 4 and 5)
49
  - Subword N-gram and Markov chains
50
+ - Embeddings in various sizes and dimensions (aligned and unaligned)
51
  - Language Vocabulary
52
  - Language Statistics
53
+
54
  ![Performance Dashboard](visualizations/performance_dashboard.png)
55
 
56
  ### Analysis and Evaluation
 
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
+ - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
+ - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
67
 
 
70
 
71
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
72
 
73
+ ![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
74
+
75
+ ![Tokenizer OOV](visualizations/tokenizer_oov.png)
76
+
77
+ ![Total Tokens](visualizations/tokenizer_total_tokens.png)
78
+
79
  ### Results
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
+ | **8k** | 3.624x | 3.62 | 0.1219% | 1,310,495 |
84
+ | **16k** | 4.031x | 4.03 | 0.1355% | 1,178,214 |
85
+ | **32k** | 4.403x | 4.40 | 0.1481% | 1,078,528 |
86
+ | **64k** | 4.707x 🏆 | 4.71 | 0.1583% | 1,008,868 |
87
 
88
  ### Tokenization Examples
89
 
90
  Below are sample sentences tokenized with each vocabulary size:
91
 
92
+ **Sample 1:** `Marija Amalija Austrijska se može odnositi na: Mariju Amaliju Josipu Anu caricu ...`
 
 
 
 
93
 
94
  | Vocab | Tokens | Count |
95
  |-------|--------|-------|
96
+ | 8k | `▁marijaama lija austri jska semožeodnositina : ... (+24 more)` | 34 |
97
+ | 16k | `▁marijaama lija austrijskasemožeodnositina :mari ... (+21 more)` | 31 |
98
+ | 32k | `▁marijaama lija austrijskasemožeodnositina :mariju ... (+19 more)` | 29 |
99
+ | 64k | `▁marijaama lija austrijskasemožeodnositina :mariju ... (+16 more)` | 26 |
100
 
101
+ **Sample 2:** `Margetići su naseljeno mjesto u općini Novi Travnik, Bosna i Hercegovina. Stanov...`
 
 
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
+ | 8k | `▁mar ge ti ći su ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ... (+15 more)` | 25 |
106
+ | 16k | `▁mar ge tići su ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ▁travnik ... (+14 more)` | 24 |
107
+ | 32k | `▁mar ge tići su ▁naseljeno ▁mjesto ▁u ▁općini ▁novitravnik ... (+14 more)` | 24 |
108
+ | 64k | `▁marge tićisu ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ▁travnik , ... (+13 more)` | 23 |
 
 
109
 
110
+ **Sample 3:** `Lilić je naseljeno mjesto u općini Srbac, Bosna i Hercegovina. Stanovništvo Refe...`
 
111
 
112
  | Vocab | Tokens | Count |
113
  |-------|--------|-------|
114
+ | 8k | `▁li lićje ▁naseljeno ▁mjestouopćinisr bac , ... (+13 more)` | 23 |
115
+ | 16k | `▁li lićje ▁naseljeno ▁mjestouopćinisr bac , ... (+13 more)` | 23 |
116
+ | 32k | `▁li lićje ▁naseljenomjesto ▁uopćinisrbac , bosna ... (+11 more)` | 21 |
117
+ | 64k | `▁li lićje ▁naseljenomjesto ▁uopćinisrbac , bosna ... (+11 more)` | 21 |
118
 
119
 
120
  ### Key Findings
121
 
122
+ - **Best Compression:** 64k achieves 4.707x compression
123
+ - **Lowest UNK Rate:** 8k with 0.1219% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
126
 
 
129
 
130
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
131
 
132
+ ![N-gram Unique](visualizations/ngram_unique.png)
133
+
134
  ![N-gram Coverage](visualizations/ngram_coverage.png)
135
 
136
  ### Results
137
 
138
+ | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
+ |--------|---------|------------|---------|----------------|------------------|-------------------|
140
+ | **2-gram** | Word | 79,811 | 16.28 | 657,818 | 9.9% | 28.8% |
141
+ | **2-gram** | Subword | 329 🏆 | 8.36 | 10,932 | 62.1% | 98.9% |
142
+ | **3-gram** | Word | 98,469 | 16.59 | 914,717 | 11.8% | 30.2% |
143
+ | **3-gram** | Subword | 3,226 | 11.66 | 100,952 | 20.8% | 64.4% |
144
+ | **4-gram** | Word | 131,360 | 17.00 | 1,461,546 | 13.0% | 31.0% |
145
+ | **4-gram** | Subword | 21,068 | 14.36 | 689,562 | 8.6% | 31.6% |
146
 
147
  ### Top 5 N-grams by Size
148
 
149
+ **2-grams (Word):**
150
+
151
+ | Rank | N-gram | Count |
152
+ |------|--------|-------|
153
+ | 1 | `spiralna galaksija` | 91,081 |
154
+ | 2 | `vanjski linkovi` | 67,671 |
155
+ | 3 | `se u` | 45,349 |
156
+ | 4 | `reference vanjski` | 43,829 |
157
+ | 5 | `ngc ic` | 40,015 |
158
+
159
+ **3-grams (Word):**
160
+
161
+ | Rank | N-gram | Count |
162
+ |------|--------|-------|
163
+ | 1 | `reference vanjski linkovi` | 43,767 |
164
+ | 2 | `prečkasta spiralna galaksija` | 32,672 |
165
+ | 3 | `zavod za statistiku` | 22,677 |
166
+ | 4 | `popisu stanovništva godine` | 20,724 |
167
+ | 5 | `na popisu stanovništva` | 20,183 |
168
+
169
+ **4-grams (Word):**
170
 
171
  | Rank | N-gram | Count |
172
  |------|--------|-------|
173
+ | 1 | `na popisu stanovništva godine` | 20,088 |
174
+ | 2 | `državni zavod za statistiku` | 14,619 |
175
+ | 3 | `broj stanovnika po popisima` | 13,853 |
176
+ | 4 | `reference vanjski linkovi u` | 13,661 |
177
+ | 5 | `pogledajte novi opći katalog` | 13,518 |
178
 
179
+ **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
+ | 1 | `a _` | 5,676,715 |
184
+ | 2 | `e _` | 4,422,458 |
185
+ | 3 | `j e` | 3,860,834 |
186
+ | 4 | `i _` | 3,755,142 |
187
+ | 5 | `_ s` | 3,354,838 |
188
 
189
+ **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
+ | 1 | `j e _` | 1,718,703 |
194
+ | 2 | `n a _` | 1,228,627 |
195
+ | 3 | `_ n a` | 1,166,020 |
196
+ | 4 | `_ j e` | 1,117,037 |
197
+ | 5 | `_ p o` | 1,073,431 |
198
+
199
+ **4-grams (Subword):**
200
+
201
+ | Rank | N-gram | Count |
202
+ |------|--------|-------|
203
+ | 1 | `_ j e _` | 915,938 |
204
+ | 2 | `i j a _` | 454,224 |
205
+ | 3 | `_ n a _` | 449,657 |
206
+ | 4 | `_ s e _` | 393,812 |
207
+ | 5 | `i j e _` | 313,056 |
208
 
209
 
210
  ### Key Findings
211
 
212
+ - **Best Perplexity:** 2-gram (subword) with 329
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
+ - **Coverage:** Top-1000 patterns cover ~32% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
 
219
 
220
  ![Markov Entropy](visualizations/markov_entropy.png)
221
 
222
+ ![Markov Contexts](visualizations/markov_contexts.png)
223
+
224
  ![Markov Branching](visualizations/markov_branching.png)
225
 
226
  ### Results
227
 
228
+ | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
+ |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
+ | **1** | Word | 0.9822 | 1.975 | 9.95 | 1,092,943 | 1.8% |
231
+ | **1** | Subword | 1.0154 | 2.021 | 7.75 | 3,822 | 0.0% |
232
+ | **2** | Word | 0.3063 | 1.237 | 1.90 | 10,856,748 | 69.4% |
233
+ | **2** | Subword | 0.9503 | 1.932 | 6.62 | 29,614 | 5.0% |
234
+ | **3** | Word | 0.1026 | 1.074 | 1.20 | 20,575,067 | 89.7% |
235
+ | **3** | Subword | 0.9528 | 1.936 | 5.48 | 195,969 | 4.7% |
236
+ | **4** | Word | 0.0377 🏆 | 1.026 | 1.06 | 24,704,289 | 96.2% |
237
+ | **4** | Subword | 0.9418 | 1.921 | 4.19 | 1,073,568 | 5.8% |
238
 
239
+ ### Generated Text Samples (Word-based)
240
 
241
+ Below are text samples generated from each word-based Markov chain model:
242
 
243
  **Context Size 1:**
244
 
245
+ 1. `i iskazivano pod bizantijsku teritoriju poljski 2 kola za zvornik i hercegovine a nastavljaju sa dru...`
246
+ 2. `je reference vanjski linkovi www portalanalitika me 31 okt 3 kalisz david friedrich ehrendorfer ehre...`
247
+ 3. `u plazmi parcijalni derivati otkriveni napad na evropskom prvenstvu su klasifikovani kao tipično do ...`
248
 
249
  **Context Size 2:**
250
 
251
+ 1. `spiralna galaksija s0 a ic 0 66 spiralna galaksija s također pogledajte orah čvor`
252
+ 2. `vanjski linkovi na hromosomu 13 proteini sindrom`
253
+ 3. `se u gorskom kotaru velebitu lici i član glavnog odbora stranka je bila 1 nositeljica u 1`
254
 
255
  **Context Size 3:**
256
 
257
+ 1. `reference vanjski linkovi skakaonica paul ausserleitner izgrađena je u periodu od do godine je tu i ...`
258
+ 2. `prečkasta spiralna galaksija koja je udaljena oko 162 miliona sg od zemlje i nalazi se u sazviježđu ...`
259
+ 3. `zavod za statistiku republike hrvatske reference vanjski linkovi u sloveniji u primorsko notranjskoj...`
260
 
261
  **Context Size 4:**
262
 
263
+ 1. `na popisu stanovništva godine črešnjevec je imao 19 stanovnika broj stanovnika po popisima 553 492 5...`
264
+ 2. `državni zavod za statistiku naselja i stanovništvo republike hrvatske 118 128 172 210 219 245 266 26...`
265
+ 3. `broj stanovnika po popisima 89 120 123 reference vanjski linkovi u sloveniji u posavskoj regiji hist...`
266
+
267
+
268
+ ### Generated Text Samples (Subword-based)
269
+
270
+ Below are text samples generated from each subword-based Markov chain model:
271
+
272
+ **Context Size 1:**
273
+
274
+ 1. `_ebiću_hakorona_`
275
+ 2. `araćiskano_nit_l`
276
+ 3. `i_d_portajemojse`
277
+
278
+ **Context Size 2:**
279
+
280
+ 1. `a_augućina_bi_med`
281
+ 2. `e_vrhipa,_ceaka_s`
282
+ 3. `jeglazrobelikimal`
283
+
284
+ **Context Size 3:**
285
+
286
+ 1. `je_poznac_ženerga_`
287
+ 2. `na_galaksija_sa_ce`
288
+ 3. `_najblijača_objavl`
289
+
290
+ **Context Size 4:**
291
+
292
+ 1. `_je_u_složenja_dell`
293
+ 2. `ija_roadbez_von_lew`
294
+ 3. `_na_pozici_bosnu!_t`
295
 
296
 
297
  ### Key Findings
298
 
299
+ - **Best Predictability:** Context-4 (word) with 96.2% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
+ - **Memory Trade-off:** Larger contexts require more storage (1,073,568 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
 
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
+ | Vocabulary Size | 502,911 |
318
+ | Total Tokens | 32,206,003 |
319
+ | Mean Frequency | 64.04 |
320
  | Median Frequency | 4 |
321
+ | Frequency Std Dev | 2755.29 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
+ | 1 | i | 934,658 |
328
+ | 2 | je | 922,929 |
329
+ | 3 | u | 915,148 |
330
+ | 4 | na | 453,346 |
331
+ | 5 | se | 397,234 |
332
+ | 6 | su | 288,366 |
333
+ | 7 | od | 268,408 |
334
+ | 8 | za | 263,873 |
335
+ | 9 | 1 | 253,982 |
336
+ | 10 | ngc | 206,398 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
340
  | Rank | Word | Frequency |
341
  |------|------|-----------|
342
+ | 1 | polikristale | 2 |
343
+ | 2 | | 2 |
344
+ | 3 | bikristal | 2 |
345
+ | 4 | polikristal | 2 |
346
+ | 5 | misesov | 2 |
347
+ | 6 | abstractmethod | 2 |
348
+ | 7 | ugođen | 2 |
349
+ | 8 | unifilarni | 2 |
350
+ | 9 | neomurani | 2 |
351
+ | 10 | arhebakterije | 2 |
352
 
353
  ### Zipf's Law Analysis
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
+ | Zipf Coefficient | 0.9663 |
358
+ | R² (Goodness of Fit) | 0.999465 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
362
 
363
  | Top N Words | Coverage |
364
  |-------------|----------|
365
+ | Top 100 | 32.1% |
366
+ | Top 1,000 | 53.2% |
367
+ | Top 5,000 | 68.8% |
368
+ | Top 10,000 | 75.7% |
369
 
370
  ### Key Findings
371
 
372
+ - **Zipf Compliance:** R²=0.9995 indicates excellent adherence to Zipf's law
373
+ - **High Frequency Dominance:** Top 100 words cover 32.1% of corpus
374
+ - **Long Tail:** 492,911 words needed for remaining 24.3% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
 
384
 
385
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
386
 
 
387
 
388
+ ### 5.1 Cross-Lingual Alignment
389
+
390
+ > *Note: Multilingual alignment visualization not available for this language.*
391
+
392
+
393
+ ### 5.2 Model Comparison
394
+
395
+ | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
+ |-------|-----------|----------|------------------|---------------|----------------|
397
+ | **mono_32d** | 32 | 0.6837 🏆 | 0.3607 | N/A | N/A |
398
+ | **mono_64d** | 64 | 0.6836 | 0.2874 | N/A | N/A |
399
+ | **mono_128d** | 128 | 0.6518 | 0.2275 | N/A | N/A |
400
 
401
  ### Key Findings
402
 
403
+ - **Best Isotropy:** mono_32d with 0.6837 (more uniform distribution)
404
+ - **Semantic Density:** Average pairwise similarity of 0.2919. Lower values indicate better semantic separation.
405
+ - **Alignment Quality:** No aligned models evaluated in this run.
406
+ - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
+ ## 6. Morphological Analysis (Experimental)
410
+
411
+ > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
+
413
+ This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
+
415
+ ### 6.1 Productivity & Complexity
416
+
417
+ | Metric | Value | Interpretation | Recommendation |
418
+ |--------|-------|----------------|----------------|
419
+ | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
+ | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
+
422
+ ### 6.2 Affix Inventory (Productive Units)
423
+
424
+ These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
425
+
426
+ #### Productive Prefixes
427
+ | Prefix | Examples |
428
+ |--------|----------|
429
+ | `-pr` | pričvršćenom, prihova, prethodnica |
430
+ | `-po` | pokusu, povljana, polimerskim |
431
+
432
+ #### Productive Suffixes
433
+ | Suffix | Examples |
434
+ |--------|----------|
435
+ | `-a` | kolomina, puferska, prihova |
436
+ | `-e` | ostatke, akademske, dominantnotype |
437
+ | `-i` | ristovski, ukrajinski, dovođeni |
438
+ | `-om` | pričvršćenom, nekontrolisanom, polupustinjskom |
439
+ | `-na` | kolomina, povljana, financirana |
440
+ | `-ja` | ašiklija, preimenovanja, grobalja |
441
+ | `-ma` | polusestrama, metaloenzima, falconsima |
442
+ | `-im` | tvrtkovim, polimerskim, briljantnim |
443
+
444
+ ### 6.3 Bound Stems (Lexical Roots)
445
+
446
+ Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
447
+
448
+ | Stem | Cohesion | Substitutability | Examples |
449
+ |------|----------|------------------|----------|
450
+ | `kovi` | 1.59x | 619 contexts | kovin, kovič, ković |
451
+ | `anov` | 1.57x | 625 contexts | hanov, kanov, banov |
452
+ | `selj` | 2.07x | 82 contexts | seljo, selja, seljak |
453
+ | `alak` | 2.52x | 33 contexts | malak, talak, stalak |
454
+ | `vanj` | 1.71x | 170 contexts | vanje, kvanj, vanja |
455
+ | `renc` | 1.98x | 75 contexts | renci, renco, renca |
456
+ | `acij` | 1.55x | 220 contexts | lacij, acije, acija |
457
+ | `alna` | 1.97x | 58 contexts | šalna, malna, valna |
458
+ | `jekt` | 1.82x | 78 contexts | objekt, subjekt, trajekt |
459
+ | `iral` | 1.50x | 164 contexts | miral, ziral, viral |
460
+ | `njsk` | 1.56x | 134 contexts | vnjski, anjski, vanjsk |
461
+ | `egov` | 1.55x | 114 contexts | negov, begov, begovo |
462
+
463
+ ### 6.4 Affix Compatibility (Co-occurrence)
464
+
465
+ This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
466
+
467
+ | Prefix | Suffix | Frequency | Examples |
468
+ |--------|--------|-----------|----------|
469
+ | `-pr` | `-a` | 63 words | prementuma, protivpožarna |
470
+ | `-po` | `-a` | 56 words | potomcima, pobunila |
471
+ | `-pr` | `-i` | 49 words | pravokutni, propuštajući |
472
+ | `-pr` | `-e` | 49 words | primijećuje, prirasle |
473
+ | `-po` | `-i` | 48 words | poručivši, poliribosomi |
474
+ | `-po` | `-e` | 32 words | poupée, popularizacije |
475
+ | `-po` | `-ma` | 12 words | potomcima, poslodavcima |
476
+ | `-pr` | `-om` | 12 words | preporodnom, preuranjenom |
477
+ | `-pr` | `-ja` | 12 words | protozoologija, pribavlja |
478
+ | `-pr` | `-na` | 11 words | protivpožarna, protimozina |
479
+
480
+ ### 6.5 Recursive Morpheme Segmentation
481
+
482
+ Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
483
+
484
+ | Word | Suggested Split | Confidence | Stem |
485
+ |------|-----------------|------------|------|
486
+ | umoljanima | **`umol-ja-ni-ma`** | 7.5 | `umol` |
487
+ | melkumani | **`melku-ma-ni`** | 6.0 | `melku` |
488
+ | postepenim | **`po-stepen-im`** | 6.0 | `stepen` |
489
+ | skečevima | **`skečevi-ma`** | 4.5 | `skečevi` |
490
+ | nesigurnostima | **`nesigurnosti-ma`** | 4.5 | `nesigurnosti` |
491
+ | balansiranje | **`balansiran-je`** | 4.5 | `balansiran` |
492
+ | ignoriranje | **`ignoriran-je`** | 4.5 | `ignoriran` |
493
+ | pobjesnio | **`po-bjesnio`** | 4.5 | `bjesnio` |
494
+ | integrirani | **`integrira-ni`** | 4.5 | `integrira` |
495
+ | rutherfordovom | **`rutherfordov-om`** | 4.5 | `rutherfordov` |
496
+ | karlingom | **`karling-om`** | 4.5 | `karling` |
497
+ | kriopirinom | **`kriopirin-om`** | 4.5 | `kriopirin` |
498
+ | šezdesetim | **`šezdeset-im`** | 4.5 | `šezdeset` |
499
+ | pojašnjena | **`po-jašn-je-na`** | 4.5 | `jašn` |
500
+ | akreditiranje | **`akreditiran-je`** | 4.5 | `akreditiran` |
501
+
502
+ ### 6.6 Linguistic Interpretation
503
+
504
+ > **Automated Insight:**
505
+ The language BS appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
506
+
507
+ ---
508
+ ## 7. Summary & Recommendations
509
 
510
  ![Performance Dashboard](visualizations/performance_dashboard.png)
511
 
 
513
 
514
  | Component | Recommended | Rationale |
515
  |-----------|-------------|-----------|
516
+ | Tokenizer | **64k BPE** | Best compression (4.71x) |
517
+ | N-gram | **2-gram** | Lowest perplexity (329) |
518
+ | Markov | **Context-4** | Highest predictability (96.2%) |
519
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
520
 
521
+
522
  ---
523
  ## Appendix: Metrics Glossary & Interpretation Guide
524
 
 
708
  author = {Kamali, Omar},
709
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
710
  year = {2025},
711
+ doi = {10.5281/zenodo.18073153},
712
+ publisher = {Zenodo},
713
  url = {https://huggingface.co/wikilangs}
714
  institution = {Omneity Labs}
715
  }
 
725
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
726
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
727
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
728
+ - 🤝 Sponsor: [Featherless AI](https://featherless.ai)
729
  ---
730
  *Generated by Wikilangs Models Pipeline*
731
 
732
+ *Report Date: 2026-01-03 10:03:26*
models/embeddings/monolingual/bs_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6c7842094c5d54ec997bd4f8206b5f27aca331f5a1c1dff76da9e6cefa40e21
3
- size 1411374464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:150a739475c8b2802aaaa35679a6ec5946f23a4489669763729d419b2cf329bf
3
+ size 1381600692
models/embeddings/monolingual/bs_128d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 128,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 371696
13
  }
 
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 128
13
  },
14
+ "vocab_size": 343142
15
  }
models/embeddings/monolingual/bs_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6fe01a31b5c93cf415cace6e7b02aa8239e718e60b37cd4c2b060a8eb251a318
3
- size 357911936
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5db060f6dd5915bae4076dfd0dea4755e1f4664360e6713434947ebf5dd49b94
3
+ size 350067636
models/embeddings/monolingual/bs_32d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 32,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 371696
13
  }
 
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 32
13
  },
14
+ "vocab_size": 343142
15
  }
models/embeddings/monolingual/bs_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff1c0f9d89bb40f97868ceeb132ac53c6484a2f8fdcc5c6cbaf6f2868d696c7f
3
- size 709066112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09f0ccc9cb7ef218444a015a72c973a1aa64b7424c24eac2b2b5f999e7bae986
3
+ size 693911988
models/embeddings/monolingual/bs_64d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 64,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 371696
13
  }
 
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 64
13
  },
14
+ "vocab_size": 343142
15
  }
models/subword_markov/bs_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b5f27f2e1460c1e87d820c8c92dd81b1f82c6d52d39730f07ad0343240f4c4b
3
- size 258521
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c413639e86aff70a1e366f239702d90f57805452729b30f47b449e1b50e9d0d1
3
+ size 236628
models/subword_markov/bs_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_contexts": 3680,
6
- "total_transitions": 247647212
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_contexts": 3822,
6
+ "total_transitions": 217153057
7
  }
models/subword_markov/bs_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:691f6350f2c87d8ba672a74a63f3856baba3e586a695e4f8cc1e00bb093febdb
3
- size 2030096
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07af575a720ce0333065d1365fd6f0dc1e9c196dbbdf47dae5915e384670002e
3
+ size 1556026
models/subword_markov/bs_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_contexts": 35380,
6
- "total_transitions": 247550979
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_contexts": 29614,
6
+ "total_transitions": 217057401
7
  }
models/subword_markov/bs_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f7bb33fe8a1b2b35089fb879359b5ccdee6a2dc4a6fa92764f5318e4c2c051b9
3
- size 11370107
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8734e9ff242be1673110fbadecec4921d18b749fab506afd58084c6454f10179
3
+ size 8759226
models/subword_markov/bs_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_contexts": 260071,
6
- "total_transitions": 247454746
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_contexts": 195969,
6
+ "total_transitions": 216961745
7
  }
models/subword_markov/bs_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:282f70dd99bb2b2125b622ee85b9719605135a2ae0a545ff1ec079fde4a31cd0
3
- size 44185313
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcd4e07fd4b57bbf32facc8ddf98017e371bfdad9f2a2932def87de4cad2a336
3
+ size 32234978
models/subword_markov/bs_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_contexts": 1544375,
6
- "total_transitions": 247358513
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_contexts": 1073568,
6
+ "total_transitions": 216866089
7
  }
models/subword_ngram/bs_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3b171086fda38b2cacca4736ca9721e98ec82df7ea537a0bf4450e1fa0f4270
3
- size 177940
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5088ff625c4275eba000b58efc27a957d0b2fe00df41f79272702d5740b6aa5a
3
+ size 149061
models/subword_ngram/bs_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_ngrams": 13004,
6
- "total_ngrams": 247647212
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_ngrams": 10932,
6
+ "total_ngrams": 217153057
7
  }
models/subword_ngram/bs_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f68e0d14a83843d048ae0bab5f16f3972dd2f5f10a586eef6dfeda247caf1686
3
- size 1633760
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:994dcf177eaabe0675b5f4a1b329598035e90a3b5e97cc7f73d373979f3cdd23
3
+ size 1254949
models/subword_ngram/bs_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_ngrams": 136436,
6
- "total_ngrams": 247550979
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_ngrams": 100952,
6
+ "total_ngrams": 217057401
7
  }
models/subword_ngram/bs_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2a25a4668d29995039cf80d734d71341a21ef16c346a7e489b00f61ef609606
3
- size 10910928
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9e9075117ccaa25ec707915fefe1acd5957f11ad9c94308474e7238513466d0
3
+ size 7917058
models/subword_ngram/bs_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "bs",
5
- "unique_ngrams": 960072,
6
- "total_ngrams": 247454746
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "bs",
5
+ "unique_ngrams": 689562,
6
+ "total_ngrams": 216961745
7
  }
models/tokenizer/bs_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab84f7758210739a88220d86d23d3f9a99422e8156920a2449641ddb4a839cbf
3
- size 510609
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6009fbe251dc69f2b102003863ae8d942c6cdb255917c51ca2f5748f2025e0b0
3
+ size 511740
models/tokenizer/bs_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/bs_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a03a861c43e4b168d6f569981254f69bb1e97114610f73801f36979f16349797
3
- size 795530
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f77069e783a7216648e25a6ebc87d0c8bc974ab6c4df1509692cd565a485b703
3
+ size 795090
models/tokenizer/bs_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/bs_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4c47d94f1d0144c562baecc82da4a80a381b89d1140ae6cb88626bfec834c555
3
- size 1379541
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b340f78c1c205596e8e78b4b37abd3a0af06a9dcb987769156d87e8ae5bc64f
3
+ size 1373883
models/tokenizer/bs_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/bs_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:705f090f1b6380f4c29e1b3dca853a74ffde76d3d0261edd9635bc0110f452fc
3
- size 373194
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a827c60064fd24d771a22fb0ed577a444662b37250d01ef94952af5e5f0ea59f
3
+ size 374247
models/tokenizer/bs_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/bs_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe14a8d1b945f3bd03d3b1b788afc4218e96b19f5b80a557ba00106fefbc47b5
3
- size 8317107
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49eafd3b4bbbba80874eda2ec39ac7b2e78de842040a668fddae30d8d872a494
3
+ size 7547245
models/vocabulary/bs_vocabulary_metadata.json CHANGED
@@ -1,16 +1,17 @@
1
  {
2
  "language": "bs",
3
- "vocabulary_size": 558155,
 
4
  "statistics": {
5
- "type_token_ratio": 0.036391908235982366,
6
  "coverage": {
7
- "top_100": 0.30248203410776353,
8
- "top_1000": 0.5185736251061464,
9
- "top_5000": 0.6729546318682332,
10
- "top_10000": 0.7393625298572655
11
  },
12
- "hapax_count": 769476,
13
- "hapax_ratio": 0.5795857433277771,
14
- "total_documents": 96233
15
  }
16
  }
 
1
  {
2
  "language": "bs",
3
+ "vocabulary_size": 502911,
4
+ "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.033338017781857625,
7
  "coverage": {
8
+ "top_100": 0.3148584842736538,
9
+ "top_1000": 0.5222226568897175,
10
+ "top_5000": 0.6752045594187739,
11
+ "top_10000": 0.7431974443827949
12
  },
13
+ "hapax_count": 590458,
14
+ "hapax_ratio": 0.5400354317709758,
15
+ "total_documents": 95656
16
  }
17
  }
models/word_markov/bs_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc9e7078d4df81ec6a101ebf8a0197bb7a7092abee7f59acc2d370c1f5159e06
3
- size 98493993
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8d96e1bb6fe5416cce99b5c6d8559355a902c39366ee4bac65c211144112c5
3
+ size 99684168
models/word_markov/bs_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_contexts": 1327715,
6
- "total_transitions": 46611373
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_contexts": 1092943,
6
+ "total_transitions": 32700805
7
  }
models/word_markov/bs_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f63562dc7c7ccdc0d7d8e972c6f458762ec1a33d7517c853122ce5c8ddc993e
3
- size 286466586
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b7fcee8bc4b37f470ffa1f616fa833e1a90112ecac1f412ad0a81c5ac29b58b
3
+ size 277373494
models/word_markov/bs_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_contexts": 10525382,
6
- "total_transitions": 46515140
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_contexts": 10856748,
6
+ "total_transitions": 32605149
7
  }
models/word_markov/bs_markov_ctx3_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9582dc3de637812d3da30d19b03a1c884f4ce0da175db42ba6d51639dd88fedf
3
- size 463368487
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ebc2e93fc71d313258da50f1964cefec942b76af63de84a7b0bb64c24a43d04
3
+ size 410403619
models/word_markov/bs_markov_ctx3_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_contexts": 23101514,
6
- "total_transitions": 46418911
7
  }
 
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_contexts": 20575067,
6
+ "total_transitions": 32509493
7
  }
models/word_markov/bs_markov_ctx4_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fbe7ccc8981a9260457038e49973e858baf5ee815f9daa5f221d9d3bb26ec2f0
3
- size 573670650
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f2ff5216e6ef640bafa4dd312ef8dad995a25afe35a2f47ff855d105c151152
3
+ size 484392746
models/word_markov/bs_markov_ctx4_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_contexts": 30570937,
6
- "total_transitions": 46322686
7
  }
 
2
  "context_size": 4,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_contexts": 24704289,
6
+ "total_transitions": 32413837
7
  }
models/word_ngram/bs_2gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:99c97b22a0c0a5c5edfa9d625815ac911c555be1f1a7e0be67f52902dc66cd97
3
- size 11862865
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f83fc5f11c0f8326e29ac35309cbdfb73699a8a949c72b421e41c46db43f6106
3
+ size 9448613
models/word_ngram/bs_2gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_ngrams": 866401,
6
- "total_ngrams": 46611373
7
  }
 
2
  "n": 2,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_ngrams": 657818,
6
+ "total_ngrams": 32700805
7
  }
models/word_ngram/bs_3gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e1b8015ac65d6f173d3d93954bcf4ad6d729f5339475ea9f46ab0eade57ec72
3
- size 22954892
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3babe8520d1c50503b96745109a27db90a3f3ca40452f51c64ae4e06fafd37c8
3
+ size 14627614
models/word_ngram/bs_3gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_ngrams": 1540282,
6
- "total_ngrams": 46515140
7
  }
 
2
  "n": 3,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_ngrams": 914717,
6
+ "total_ngrams": 32605149
7
  }
models/word_ngram/bs_4gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94d9815bd2fecb0a318ed09618e190927c12a0ac232ecc3854041c6e954684c8
3
- size 41299300
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:762b45944f4641b6630a17f47d8317ebdd6446f7959328117df5bc157a98c126
3
+ size 24754896
models/word_ngram/bs_4gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "word",
4
  "language": "bs",
5
- "unique_ngrams": 2663711,
6
- "total_ngrams": 46418911
7
  }
 
2
  "n": 4,
3
  "variant": "word",
4
  "language": "bs",
5
+ "unique_ngrams": 1461546,
6
+ "total_ngrams": 32509493
7
  }
visualizations/embedding_isotropy.png CHANGED
visualizations/embedding_norms.png CHANGED
visualizations/embedding_similarity.png CHANGED

Git LFS Details

  • SHA256: c599e8a14a73caa75414c85f22606a17d202632e940af72e7664b00a119138b2
  • Pointer size: 131 Bytes
  • Size of remote file: 144 kB

Git LFS Details

  • SHA256: 1475d229f4c72fdfed7308cf3d2cb18df5301e27524104edded545ba8c519864
  • Pointer size: 131 Bytes
  • Size of remote file: 146 kB
visualizations/markov_branching.png CHANGED
visualizations/markov_contexts.png CHANGED