Upload all models and assets for bs (20251001)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +311 -142
- models/embeddings/monolingual/bs_128d.bin +2 -2
- models/embeddings/monolingual/bs_128d_metadata.json +5 -3
- models/embeddings/monolingual/bs_32d.bin +2 -2
- models/embeddings/monolingual/bs_32d_metadata.json +5 -3
- models/embeddings/monolingual/bs_64d.bin +2 -2
- models/embeddings/monolingual/bs_64d_metadata.json +5 -3
- models/subword_markov/bs_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/bs_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/bs_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/bs_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/bs_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/bs_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/bs_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/bs_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/bs_2gram_subword.parquet +2 -2
- models/subword_ngram/bs_2gram_subword_metadata.json +2 -2
- models/subword_ngram/bs_3gram_subword.parquet +2 -2
- models/subword_ngram/bs_3gram_subword_metadata.json +2 -2
- models/subword_ngram/bs_4gram_subword.parquet +2 -2
- models/subword_ngram/bs_4gram_subword_metadata.json +2 -2
- models/tokenizer/bs_tokenizer_16k.model +2 -2
- models/tokenizer/bs_tokenizer_16k.vocab +0 -0
- models/tokenizer/bs_tokenizer_32k.model +2 -2
- models/tokenizer/bs_tokenizer_32k.vocab +0 -0
- models/tokenizer/bs_tokenizer_64k.model +2 -2
- models/tokenizer/bs_tokenizer_64k.vocab +0 -0
- models/tokenizer/bs_tokenizer_8k.model +2 -2
- models/tokenizer/bs_tokenizer_8k.vocab +0 -0
- models/vocabulary/bs_vocabulary.parquet +2 -2
- models/vocabulary/bs_vocabulary_metadata.json +10 -9
- models/word_markov/bs_markov_ctx1_word.parquet +2 -2
- models/word_markov/bs_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/bs_markov_ctx2_word.parquet +2 -2
- models/word_markov/bs_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/bs_markov_ctx3_word.parquet +2 -2
- models/word_markov/bs_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/bs_markov_ctx4_word.parquet +2 -2
- models/word_markov/bs_markov_ctx4_word_metadata.json +2 -2
- models/word_ngram/bs_2gram_word.parquet +2 -2
- models/word_ngram/bs_2gram_word_metadata.json +2 -2
- models/word_ngram/bs_3gram_word.parquet +2 -2
- models/word_ngram/bs_3gram_word_metadata.json +2 -2
- models/word_ngram/bs_4gram_word.parquet +2 -2
- models/word_ngram/bs_4gram_word_metadata.json +2 -2
- visualizations/embedding_isotropy.png +0 -0
- visualizations/embedding_norms.png +0 -0
- visualizations/embedding_similarity.png +2 -2
- visualizations/markov_branching.png +0 -0
- visualizations/markov_contexts.png +0 -0
README.md
CHANGED
|
@@ -23,14 +23,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# BS - Wikilangs Models
|
|
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,60 +70,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** |
|
| 77 |
-
| **32k** | 4.
|
| 78 |
-
| **64k** | 4.
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:** `
|
| 85 |
-
|
| 86 |
-
Stanovništvo
|
| 87 |
-
|
| 88 |
-
...`
|
| 89 |
|
| 90 |
| Vocab | Tokens | Count |
|
| 91 |
|-------|--------|-------|
|
| 92 |
-
| 8k | `▁
|
| 93 |
-
| 16k | `▁
|
| 94 |
-
| 32k | `▁
|
| 95 |
-
| 64k | `▁
|
| 96 |
|
| 97 |
-
**Sample 2:** `
|
| 98 |
-
|
| 99 |
-
Stanovništvo ...`
|
| 100 |
|
| 101 |
| Vocab | Tokens | Count |
|
| 102 |
|-------|--------|-------|
|
| 103 |
-
| 8k | `▁
|
| 104 |
-
| 16k | `▁
|
| 105 |
-
| 32k | `▁
|
| 106 |
-
| 64k | `▁
|
| 107 |
-
|
| 108 |
-
**Sample 3:** `Hrvatska:
|
| 109 |
|
| 110 |
-
|
| 111 |
-
No...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
-
| 8k | `▁
|
| 116 |
-
| 16k | `▁
|
| 117 |
-
| 32k | `▁
|
| 118 |
-
| 64k | `▁
|
| 119 |
|
| 120 |
|
| 121 |
### Key Findings
|
| 122 |
|
| 123 |
-
- **Best Compression:** 64k achieves 4.
|
| 124 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 125 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 126 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 127 |
|
|
@@ -130,57 +129,89 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 130 |
|
| 131 |

|
| 132 |
|
|
|
|
|
|
|
| 133 |

|
| 134 |
|
| 135 |
### Results
|
| 136 |
|
| 137 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 138 |
-
|
| 139 |
-
| **2-gram** |
|
| 140 |
-
| **2-gram** |
|
| 141 |
-
| **3-gram** |
|
| 142 |
-
| **3-gram** | 3,
|
| 143 |
-
| **4-gram** |
|
| 144 |
-
| **4-gram** |
|
| 145 |
|
| 146 |
### Top 5 N-grams by Size
|
| 147 |
|
| 148 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
| Rank | N-gram | Count |
|
| 151 |
|------|--------|-------|
|
| 152 |
-
| 1 | `
|
| 153 |
-
| 2 |
|
| 154 |
-
| 3 | `
|
| 155 |
-
| 4 | `
|
| 156 |
-
| 5 | `
|
| 157 |
|
| 158 |
-
**
|
| 159 |
|
| 160 |
| Rank | N-gram | Count |
|
| 161 |
|------|--------|-------|
|
| 162 |
-
| 1 | `
|
| 163 |
-
| 2 | `
|
| 164 |
-
| 3 | `
|
| 165 |
-
| 4 |
|
| 166 |
-
| 5 | `
|
| 167 |
|
| 168 |
-
**
|
| 169 |
|
| 170 |
| Rank | N-gram | Count |
|
| 171 |
|------|--------|-------|
|
| 172 |
-
| 1 | `
|
| 173 |
-
| 2 | `
|
| 174 |
-
| 3 | `
|
| 175 |
-
| 4 | `
|
| 176 |
-
| 5 | `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
### Key Findings
|
| 180 |
|
| 181 |
-
- **Best Perplexity:** 2-gram with
|
| 182 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 183 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 184 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 185 |
|
| 186 |
---
|
|
@@ -188,55 +219,86 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 188 |
|
| 189 |

|
| 190 |
|
|
|
|
|
|
|
| 191 |

|
| 192 |
|
| 193 |
### Results
|
| 194 |
|
| 195 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 196 |
-
|
| 197 |
-
| **1** | 0.
|
| 198 |
-
| **1** | 1.
|
| 199 |
-
| **2** | 0.
|
| 200 |
-
| **2** |
|
| 201 |
-
| **3** | 0.
|
| 202 |
-
| **3** |
|
| 203 |
-
| **4** | 0.
|
| 204 |
-
| **4** | 0.
|
| 205 |
|
| 206 |
-
### Generated Text Samples
|
| 207 |
|
| 208 |
-
Below are text samples generated from each Markov chain model:
|
| 209 |
|
| 210 |
**Context Size 1:**
|
| 211 |
|
| 212 |
-
1.
|
| 213 |
-
2.
|
| 214 |
-
3. `
|
| 215 |
|
| 216 |
**Context Size 2:**
|
| 217 |
|
| 218 |
-
1. `
|
| 219 |
-
2.
|
| 220 |
-
3. `
|
| 221 |
|
| 222 |
**Context Size 3:**
|
| 223 |
|
| 224 |
-
1. `
|
| 225 |
-
2. `
|
| 226 |
-
3. `
|
| 227 |
|
| 228 |
**Context Size 4:**
|
| 229 |
|
| 230 |
-
1. `
|
| 231 |
-
2. `
|
| 232 |
-
3. `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
|
| 235 |
### Key Findings
|
| 236 |
|
| 237 |
-
- **Best Predictability:** Context-4 with
|
| 238 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 239 |
-
- **Memory Trade-off:** Larger contexts require more storage (1,
|
| 240 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 241 |
|
| 242 |
---
|
|
@@ -252,64 +314,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 252 |
|
| 253 |
| Metric | Value |
|
| 254 |
|--------|-------|
|
| 255 |
-
| Vocabulary Size |
|
| 256 |
-
| Total Tokens |
|
| 257 |
-
| Mean Frequency |
|
| 258 |
| Median Frequency | 4 |
|
| 259 |
-
| Frequency Std Dev |
|
| 260 |
|
| 261 |
### Most Common Words
|
| 262 |
|
| 263 |
| Rank | Word | Frequency |
|
| 264 |
|------|------|-----------|
|
| 265 |
-
| 1 | i |
|
| 266 |
-
| 2 | je |
|
| 267 |
-
| 3 | u |
|
| 268 |
-
| 4 | na |
|
| 269 |
-
| 5 | se |
|
| 270 |
-
| 6 | su |
|
| 271 |
-
| 7 |
|
| 272 |
-
| 8 |
|
| 273 |
-
| 9 |
|
| 274 |
-
| 10 |
|
| 275 |
|
| 276 |
### Least Common Words (from vocabulary)
|
| 277 |
|
| 278 |
| Rank | Word | Frequency |
|
| 279 |
|------|------|-----------|
|
| 280 |
-
| 1 |
|
| 281 |
-
| 2 |
|
| 282 |
-
| 3 |
|
| 283 |
-
| 4 |
|
| 284 |
-
| 5 |
|
| 285 |
-
| 6 |
|
| 286 |
-
| 7 |
|
| 287 |
-
| 8 |
|
| 288 |
-
| 9 |
|
| 289 |
-
| 10 |
|
| 290 |
|
| 291 |
### Zipf's Law Analysis
|
| 292 |
|
| 293 |
| Metric | Value |
|
| 294 |
|--------|-------|
|
| 295 |
-
| Zipf Coefficient | 0.
|
| 296 |
-
| R² (Goodness of Fit) | 0.
|
| 297 |
| Adherence Quality | **excellent** |
|
| 298 |
|
| 299 |
### Coverage Analysis
|
| 300 |
|
| 301 |
| Top N Words | Coverage |
|
| 302 |
|-------------|----------|
|
| 303 |
-
| Top 100 |
|
| 304 |
-
| Top 1,000 | 53.
|
| 305 |
-
| Top 5,000 | 68.
|
| 306 |
-
| Top 10,000 | 75.
|
| 307 |
|
| 308 |
### Key Findings
|
| 309 |
|
| 310 |
-
- **Zipf Compliance:** R²=0.
|
| 311 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 312 |
-
- **Long Tail:**
|
| 313 |
|
| 314 |
---
|
| 315 |
## 5. Word Embeddings Evaluation
|
|
@@ -322,24 +384,128 @@ Below are text samples generated from each Markov chain model:
|
|
| 322 |
|
| 323 |

|
| 324 |
|
| 325 |
-
### Model Comparison
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
### Key Findings
|
| 335 |
|
| 336 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 337 |
-
- **
|
| 338 |
-
- **
|
| 339 |
-
- **Recommendation:**
|
| 340 |
|
| 341 |
---
|
| 342 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |

|
| 345 |
|
|
@@ -347,11 +513,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 347 |
|
| 348 |
| Component | Recommended | Rationale |
|
| 349 |
|-----------|-------------|-----------|
|
| 350 |
-
| Tokenizer | **
|
| 351 |
-
| N-gram | **
|
| 352 |
-
| Markov | **Context-4** | Highest predictability (
|
| 353 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 354 |
|
|
|
|
| 355 |
---
|
| 356 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 357 |
|
|
@@ -541,7 +708,8 @@ If you use these models in your research, please cite:
|
|
| 541 |
author = {Kamali, Omar},
|
| 542 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 543 |
year = {2025},
|
| 544 |
-
|
|
|
|
| 545 |
url = {https://huggingface.co/wikilangs}
|
| 546 |
institution = {Omneity Labs}
|
| 547 |
}
|
|
@@ -557,7 +725,8 @@ MIT License - Free for academic and commercial use.
|
|
| 557 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 558 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 559 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 560 |
---
|
| 561 |
*Generated by Wikilangs Models Pipeline*
|
| 562 |
|
| 563 |
-
*Report Date:
|
|
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
+
value: 4.707
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
+
value: 0.6837
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
+
value: 0
|
| 33 |
+
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
# BS - Wikilangs Models
|
|
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
| 53 |
+
|
| 54 |

|
| 55 |
|
| 56 |
### Analysis and Evaluation
|
|
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
+
- [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
|
| 64 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
| 67 |
|
|
|
|
| 70 |
|
| 71 |

|
| 72 |
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+

|
| 76 |
+
|
| 77 |
+

|
| 78 |
+
|
| 79 |
### Results
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
+
| **8k** | 3.624x | 3.62 | 0.1219% | 1,310,495 |
|
| 84 |
+
| **16k** | 4.031x | 4.03 | 0.1355% | 1,178,214 |
|
| 85 |
+
| **32k** | 4.403x | 4.40 | 0.1481% | 1,078,528 |
|
| 86 |
+
| **64k** | 4.707x 🏆 | 4.71 | 0.1583% | 1,008,868 |
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
+
**Sample 1:** `Marija Amalija Austrijska se može odnositi na: Mariju Amaliju Josipu Anu caricu ...`
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
+
| 8k | `▁marija ▁ama lija ▁austri jska ▁se ▁može ▁odnositi ▁na : ... (+24 more)` | 34 |
|
| 97 |
+
| 16k | `▁marija ▁ama lija ▁austrijska ▁se ▁može ▁odnositi ▁na : ▁mari ... (+21 more)` | 31 |
|
| 98 |
+
| 32k | `▁marija ▁ama lija ▁austrijska ▁se ▁može ▁odnositi ▁na : ▁mariju ... (+19 more)` | 29 |
|
| 99 |
+
| 64k | `▁marija ▁ama lija ▁austrijska ▁se ▁može ▁odnositi ▁na : ▁mariju ... (+16 more)` | 26 |
|
| 100 |
|
| 101 |
+
**Sample 2:** `Margetići su naseljeno mjesto u općini Novi Travnik, Bosna i Hercegovina. Stanov...`
|
|
|
|
|
|
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁mar ge ti ći ▁su ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ... (+15 more)` | 25 |
|
| 106 |
+
| 16k | `▁mar ge tići ▁su ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ▁travnik ... (+14 more)` | 24 |
|
| 107 |
+
| 32k | `▁mar ge tići ▁su ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ▁travnik ... (+14 more)` | 24 |
|
| 108 |
+
| 64k | `▁marge tići ▁su ▁naseljeno ▁mjesto ▁u ▁općini ▁novi ▁travnik , ... (+13 more)` | 23 |
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
**Sample 3:** `Lilić je naseljeno mjesto u općini Srbac, Bosna i Hercegovina. Stanovništvo Refe...`
|
|
|
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
+
| 8k | `▁li lić ▁je ▁naseljeno ▁mjesto ▁u ▁općini ▁sr bac , ... (+13 more)` | 23 |
|
| 115 |
+
| 16k | `▁li lić ▁je ▁naseljeno ▁mjesto ▁u ▁općini ▁sr bac , ... (+13 more)` | 23 |
|
| 116 |
+
| 32k | `▁li lić ▁je ▁naseljeno ▁mjesto ▁u ▁općini ▁srbac , ▁bosna ... (+11 more)` | 21 |
|
| 117 |
+
| 64k | `▁li lić ▁je ▁naseljeno ▁mjesto ▁u ▁općini ▁srbac , ▁bosna ... (+11 more)` | 21 |
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
+
- **Best Compression:** 64k achieves 4.707x compression
|
| 123 |
+
- **Lowest UNK Rate:** 8k with 0.1219% unknown tokens
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
|
|
| 129 |
|
| 130 |

|
| 131 |
|
| 132 |
+

|
| 133 |
+
|
| 134 |

|
| 135 |
|
| 136 |
### Results
|
| 137 |
|
| 138 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
+
| **2-gram** | Word | 79,811 | 16.28 | 657,818 | 9.9% | 28.8% |
|
| 141 |
+
| **2-gram** | Subword | 329 🏆 | 8.36 | 10,932 | 62.1% | 98.9% |
|
| 142 |
+
| **3-gram** | Word | 98,469 | 16.59 | 914,717 | 11.8% | 30.2% |
|
| 143 |
+
| **3-gram** | Subword | 3,226 | 11.66 | 100,952 | 20.8% | 64.4% |
|
| 144 |
+
| **4-gram** | Word | 131,360 | 17.00 | 1,461,546 | 13.0% | 31.0% |
|
| 145 |
+
| **4-gram** | Subword | 21,068 | 14.36 | 689,562 | 8.6% | 31.6% |
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
| 149 |
+
**2-grams (Word):**
|
| 150 |
+
|
| 151 |
+
| Rank | N-gram | Count |
|
| 152 |
+
|------|--------|-------|
|
| 153 |
+
| 1 | `spiralna galaksija` | 91,081 |
|
| 154 |
+
| 2 | `vanjski linkovi` | 67,671 |
|
| 155 |
+
| 3 | `se u` | 45,349 |
|
| 156 |
+
| 4 | `reference vanjski` | 43,829 |
|
| 157 |
+
| 5 | `ngc ic` | 40,015 |
|
| 158 |
+
|
| 159 |
+
**3-grams (Word):**
|
| 160 |
+
|
| 161 |
+
| Rank | N-gram | Count |
|
| 162 |
+
|------|--------|-------|
|
| 163 |
+
| 1 | `reference vanjski linkovi` | 43,767 |
|
| 164 |
+
| 2 | `prečkasta spiralna galaksija` | 32,672 |
|
| 165 |
+
| 3 | `zavod za statistiku` | 22,677 |
|
| 166 |
+
| 4 | `popisu stanovništva godine` | 20,724 |
|
| 167 |
+
| 5 | `na popisu stanovništva` | 20,183 |
|
| 168 |
+
|
| 169 |
+
**4-grams (Word):**
|
| 170 |
|
| 171 |
| Rank | N-gram | Count |
|
| 172 |
|------|--------|-------|
|
| 173 |
+
| 1 | `na popisu stanovništva godine` | 20,088 |
|
| 174 |
+
| 2 | `državni zavod za statistiku` | 14,619 |
|
| 175 |
+
| 3 | `broj stanovnika po popisima` | 13,853 |
|
| 176 |
+
| 4 | `reference vanjski linkovi u` | 13,661 |
|
| 177 |
+
| 5 | `pogledajte novi opći katalog` | 13,518 |
|
| 178 |
|
| 179 |
+
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
+
| 1 | `a _` | 5,676,715 |
|
| 184 |
+
| 2 | `e _` | 4,422,458 |
|
| 185 |
+
| 3 | `j e` | 3,860,834 |
|
| 186 |
+
| 4 | `i _` | 3,755,142 |
|
| 187 |
+
| 5 | `_ s` | 3,354,838 |
|
| 188 |
|
| 189 |
+
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
+
| 1 | `j e _` | 1,718,703 |
|
| 194 |
+
| 2 | `n a _` | 1,228,627 |
|
| 195 |
+
| 3 | `_ n a` | 1,166,020 |
|
| 196 |
+
| 4 | `_ j e` | 1,117,037 |
|
| 197 |
+
| 5 | `_ p o` | 1,073,431 |
|
| 198 |
+
|
| 199 |
+
**4-grams (Subword):**
|
| 200 |
+
|
| 201 |
+
| Rank | N-gram | Count |
|
| 202 |
+
|------|--------|-------|
|
| 203 |
+
| 1 | `_ j e _` | 915,938 |
|
| 204 |
+
| 2 | `i j a _` | 454,224 |
|
| 205 |
+
| 3 | `_ n a _` | 449,657 |
|
| 206 |
+
| 4 | `_ s e _` | 393,812 |
|
| 207 |
+
| 5 | `i j e _` | 313,056 |
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
+
- **Best Perplexity:** 2-gram (subword) with 329
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
+
- **Coverage:** Top-1000 patterns cover ~32% of corpus
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
|
|
| 219 |
|
| 220 |

|
| 221 |
|
| 222 |
+

|
| 223 |
+
|
| 224 |

|
| 225 |
|
| 226 |
### Results
|
| 227 |
|
| 228 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
+
| **1** | Word | 0.9822 | 1.975 | 9.95 | 1,092,943 | 1.8% |
|
| 231 |
+
| **1** | Subword | 1.0154 | 2.021 | 7.75 | 3,822 | 0.0% |
|
| 232 |
+
| **2** | Word | 0.3063 | 1.237 | 1.90 | 10,856,748 | 69.4% |
|
| 233 |
+
| **2** | Subword | 0.9503 | 1.932 | 6.62 | 29,614 | 5.0% |
|
| 234 |
+
| **3** | Word | 0.1026 | 1.074 | 1.20 | 20,575,067 | 89.7% |
|
| 235 |
+
| **3** | Subword | 0.9528 | 1.936 | 5.48 | 195,969 | 4.7% |
|
| 236 |
+
| **4** | Word | 0.0377 🏆 | 1.026 | 1.06 | 24,704,289 | 96.2% |
|
| 237 |
+
| **4** | Subword | 0.9418 | 1.921 | 4.19 | 1,073,568 | 5.8% |
|
| 238 |
|
| 239 |
+
### Generated Text Samples (Word-based)
|
| 240 |
|
| 241 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
+
1. `i iskazivano pod bizantijsku teritoriju poljski 2 kola za zvornik i hercegovine a nastavljaju sa dru...`
|
| 246 |
+
2. `je reference vanjski linkovi www portalanalitika me 31 okt 3 kalisz david friedrich ehrendorfer ehre...`
|
| 247 |
+
3. `u plazmi parcijalni derivati otkriveni napad na evropskom prvenstvu su klasifikovani kao tipično do ...`
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
+
1. `spiralna galaksija s0 a ic 0 66 spiralna galaksija s također pogledajte orah čvor`
|
| 252 |
+
2. `vanjski linkovi na hromosomu 13 proteini sindrom`
|
| 253 |
+
3. `se u gorskom kotaru velebitu lici i član glavnog odbora stranka je bila 1 nositeljica u 1`
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
+
1. `reference vanjski linkovi skakaonica paul ausserleitner izgrađena je u periodu od do godine je tu i ...`
|
| 258 |
+
2. `prečkasta spiralna galaksija koja je udaljena oko 162 miliona sg od zemlje i nalazi se u sazviježđu ...`
|
| 259 |
+
3. `zavod za statistiku republike hrvatske reference vanjski linkovi u sloveniji u primorsko notranjskoj...`
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
+
1. `na popisu stanovništva godine črešnjevec je imao 19 stanovnika broj stanovnika po popisima 553 492 5...`
|
| 264 |
+
2. `državni zavod za statistiku naselja i stanovništvo republike hrvatske 118 128 172 210 219 245 266 26...`
|
| 265 |
+
3. `broj stanovnika po popisima 89 120 123 reference vanjski linkovi u sloveniji u posavskoj regiji hist...`
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
### Generated Text Samples (Subword-based)
|
| 269 |
+
|
| 270 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 271 |
+
|
| 272 |
+
**Context Size 1:**
|
| 273 |
+
|
| 274 |
+
1. `_ebiću_hakorona_`
|
| 275 |
+
2. `araćiskano_nit_l`
|
| 276 |
+
3. `i_d_portajemojse`
|
| 277 |
+
|
| 278 |
+
**Context Size 2:**
|
| 279 |
+
|
| 280 |
+
1. `a_augućina_bi_med`
|
| 281 |
+
2. `e_vrhipa,_ceaka_s`
|
| 282 |
+
3. `jeglazrobelikimal`
|
| 283 |
+
|
| 284 |
+
**Context Size 3:**
|
| 285 |
+
|
| 286 |
+
1. `je_poznac_ženerga_`
|
| 287 |
+
2. `na_galaksija_sa_ce`
|
| 288 |
+
3. `_najblijača_objavl`
|
| 289 |
+
|
| 290 |
+
**Context Size 4:**
|
| 291 |
+
|
| 292 |
+
1. `_je_u_složenja_dell`
|
| 293 |
+
2. `ija_roadbez_von_lew`
|
| 294 |
+
3. `_na_pozici_bosnu!_t`
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
+
- **Best Predictability:** Context-4 (word) with 96.2% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
+
- **Memory Trade-off:** Larger contexts require more storage (1,073,568 contexts)
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
+
| Vocabulary Size | 502,911 |
|
| 318 |
+
| Total Tokens | 32,206,003 |
|
| 319 |
+
| Mean Frequency | 64.04 |
|
| 320 |
| Median Frequency | 4 |
|
| 321 |
+
| Frequency Std Dev | 2755.29 |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
+
| 1 | i | 934,658 |
|
| 328 |
+
| 2 | je | 922,929 |
|
| 329 |
+
| 3 | u | 915,148 |
|
| 330 |
+
| 4 | na | 453,346 |
|
| 331 |
+
| 5 | se | 397,234 |
|
| 332 |
+
| 6 | su | 288,366 |
|
| 333 |
+
| 7 | od | 268,408 |
|
| 334 |
+
| 8 | za | 263,873 |
|
| 335 |
+
| 9 | 1 | 253,982 |
|
| 336 |
+
| 10 | ngc | 206,398 |
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
+
| 1 | polikristale | 2 |
|
| 343 |
+
| 2 | ṁ | 2 |
|
| 344 |
+
| 3 | bikristal | 2 |
|
| 345 |
+
| 4 | polikristal | 2 |
|
| 346 |
+
| 5 | misesov | 2 |
|
| 347 |
+
| 6 | abstractmethod | 2 |
|
| 348 |
+
| 7 | ugođen | 2 |
|
| 349 |
+
| 8 | unifilarni | 2 |
|
| 350 |
+
| 9 | neomurani | 2 |
|
| 351 |
+
| 10 | arhebakterije | 2 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
+
| Zipf Coefficient | 0.9663 |
|
| 358 |
+
| R² (Goodness of Fit) | 0.999465 |
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
+
| Top 100 | 32.1% |
|
| 366 |
+
| Top 1,000 | 53.2% |
|
| 367 |
+
| Top 5,000 | 68.8% |
|
| 368 |
+
| Top 10,000 | 75.7% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
+
- **Zipf Compliance:** R²=0.9995 indicates excellent adherence to Zipf's law
|
| 373 |
+
- **High Frequency Dominance:** Top 100 words cover 32.1% of corpus
|
| 374 |
+
- **Long Tail:** 492,911 words needed for remaining 24.3% coverage
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 384 |
|
| 385 |

|
| 386 |
|
|
|
|
| 387 |
|
| 388 |
+
### 5.1 Cross-Lingual Alignment
|
| 389 |
+
|
| 390 |
+
> *Note: Multilingual alignment visualization not available for this language.*
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
### 5.2 Model Comparison
|
| 394 |
+
|
| 395 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
+
| **mono_32d** | 32 | 0.6837 🏆 | 0.3607 | N/A | N/A |
|
| 398 |
+
| **mono_64d** | 64 | 0.6836 | 0.2874 | N/A | N/A |
|
| 399 |
+
| **mono_128d** | 128 | 0.6518 | 0.2275 | N/A | N/A |
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
+
- **Best Isotropy:** mono_32d with 0.6837 (more uniform distribution)
|
| 404 |
+
- **Semantic Density:** Average pairwise similarity of 0.2919. Lower values indicate better semantic separation.
|
| 405 |
+
- **Alignment Quality:** No aligned models evaluated in this run.
|
| 406 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
+
## 6. Morphological Analysis (Experimental)
|
| 410 |
+
|
| 411 |
+
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
+
|
| 413 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
+
|
| 415 |
+
### 6.1 Productivity & Complexity
|
| 416 |
+
|
| 417 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
+
|--------|-------|----------------|----------------|
|
| 419 |
+
| Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
|
| 420 |
+
| Idiomaticity Gap | **-1.000** | Low formulaic content | - |
|
| 421 |
+
|
| 422 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
+
|
| 424 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 425 |
+
|
| 426 |
+
#### Productive Prefixes
|
| 427 |
+
| Prefix | Examples |
|
| 428 |
+
|--------|----------|
|
| 429 |
+
| `-pr` | pričvršćenom, prihova, prethodnica |
|
| 430 |
+
| `-po` | pokusu, povljana, polimerskim |
|
| 431 |
+
|
| 432 |
+
#### Productive Suffixes
|
| 433 |
+
| Suffix | Examples |
|
| 434 |
+
|--------|----------|
|
| 435 |
+
| `-a` | kolomina, puferska, prihova |
|
| 436 |
+
| `-e` | ostatke, akademske, dominantnotype |
|
| 437 |
+
| `-i` | ristovski, ukrajinski, dovođeni |
|
| 438 |
+
| `-om` | pričvršćenom, nekontrolisanom, polupustinjskom |
|
| 439 |
+
| `-na` | kolomina, povljana, financirana |
|
| 440 |
+
| `-ja` | ašiklija, preimenovanja, grobalja |
|
| 441 |
+
| `-ma` | polusestrama, metaloenzima, falconsima |
|
| 442 |
+
| `-im` | tvrtkovim, polimerskim, briljantnim |
|
| 443 |
+
|
| 444 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 445 |
+
|
| 446 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 447 |
+
|
| 448 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 449 |
+
|------|----------|------------------|----------|
|
| 450 |
+
| `kovi` | 1.59x | 619 contexts | kovin, kovič, ković |
|
| 451 |
+
| `anov` | 1.57x | 625 contexts | hanov, kanov, banov |
|
| 452 |
+
| `selj` | 2.07x | 82 contexts | seljo, selja, seljak |
|
| 453 |
+
| `alak` | 2.52x | 33 contexts | malak, talak, stalak |
|
| 454 |
+
| `vanj` | 1.71x | 170 contexts | vanje, kvanj, vanja |
|
| 455 |
+
| `renc` | 1.98x | 75 contexts | renci, renco, renca |
|
| 456 |
+
| `acij` | 1.55x | 220 contexts | lacij, acije, acija |
|
| 457 |
+
| `alna` | 1.97x | 58 contexts | šalna, malna, valna |
|
| 458 |
+
| `jekt` | 1.82x | 78 contexts | objekt, subjekt, trajekt |
|
| 459 |
+
| `iral` | 1.50x | 164 contexts | miral, ziral, viral |
|
| 460 |
+
| `njsk` | 1.56x | 134 contexts | vnjski, anjski, vanjsk |
|
| 461 |
+
| `egov` | 1.55x | 114 contexts | negov, begov, begovo |
|
| 462 |
+
|
| 463 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 464 |
+
|
| 465 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 466 |
+
|
| 467 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 468 |
+
|--------|--------|-----------|----------|
|
| 469 |
+
| `-pr` | `-a` | 63 words | prementuma, protivpožarna |
|
| 470 |
+
| `-po` | `-a` | 56 words | potomcima, pobunila |
|
| 471 |
+
| `-pr` | `-i` | 49 words | pravokutni, propuštajući |
|
| 472 |
+
| `-pr` | `-e` | 49 words | primijećuje, prirasle |
|
| 473 |
+
| `-po` | `-i` | 48 words | poručivši, poliribosomi |
|
| 474 |
+
| `-po` | `-e` | 32 words | poupée, popularizacije |
|
| 475 |
+
| `-po` | `-ma` | 12 words | potomcima, poslodavcima |
|
| 476 |
+
| `-pr` | `-om` | 12 words | preporodnom, preuranjenom |
|
| 477 |
+
| `-pr` | `-ja` | 12 words | protozoologija, pribavlja |
|
| 478 |
+
| `-pr` | `-na` | 11 words | protivpožarna, protimozina |
|
| 479 |
+
|
| 480 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 481 |
+
|
| 482 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 483 |
+
|
| 484 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 485 |
+
|------|-----------------|------------|------|
|
| 486 |
+
| umoljanima | **`umol-ja-ni-ma`** | 7.5 | `umol` |
|
| 487 |
+
| melkumani | **`melku-ma-ni`** | 6.0 | `melku` |
|
| 488 |
+
| postepenim | **`po-stepen-im`** | 6.0 | `stepen` |
|
| 489 |
+
| skečevima | **`skečevi-ma`** | 4.5 | `skečevi` |
|
| 490 |
+
| nesigurnostima | **`nesigurnosti-ma`** | 4.5 | `nesigurnosti` |
|
| 491 |
+
| balansiranje | **`balansiran-je`** | 4.5 | `balansiran` |
|
| 492 |
+
| ignoriranje | **`ignoriran-je`** | 4.5 | `ignoriran` |
|
| 493 |
+
| pobjesnio | **`po-bjesnio`** | 4.5 | `bjesnio` |
|
| 494 |
+
| integrirani | **`integrira-ni`** | 4.5 | `integrira` |
|
| 495 |
+
| rutherfordovom | **`rutherfordov-om`** | 4.5 | `rutherfordov` |
|
| 496 |
+
| karlingom | **`karling-om`** | 4.5 | `karling` |
|
| 497 |
+
| kriopirinom | **`kriopirin-om`** | 4.5 | `kriopirin` |
|
| 498 |
+
| šezdesetim | **`šezdeset-im`** | 4.5 | `šezdeset` |
|
| 499 |
+
| pojašnjena | **`po-jašn-je-na`** | 4.5 | `jašn` |
|
| 500 |
+
| akreditiranje | **`akreditiran-je`** | 4.5 | `akreditiran` |
|
| 501 |
+
|
| 502 |
+
### 6.6 Linguistic Interpretation
|
| 503 |
+
|
| 504 |
+
> **Automated Insight:**
|
| 505 |
+
The language BS appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
|
| 506 |
+
|
| 507 |
+
---
|
| 508 |
+
## 7. Summary & Recommendations
|
| 509 |
|
| 510 |

|
| 511 |
|
|
|
|
| 513 |
|
| 514 |
| Component | Recommended | Rationale |
|
| 515 |
|-----------|-------------|-----------|
|
| 516 |
+
| Tokenizer | **64k BPE** | Best compression (4.71x) |
|
| 517 |
+
| N-gram | **2-gram** | Lowest perplexity (329) |
|
| 518 |
+
| Markov | **Context-4** | Highest predictability (96.2%) |
|
| 519 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 520 |
|
| 521 |
+
|
| 522 |
---
|
| 523 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 524 |
|
|
|
|
| 708 |
author = {Kamali, Omar},
|
| 709 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 710 |
year = {2025},
|
| 711 |
+
doi = {10.5281/zenodo.18073153},
|
| 712 |
+
publisher = {Zenodo},
|
| 713 |
url = {https://huggingface.co/wikilangs}
|
| 714 |
institution = {Omneity Labs}
|
| 715 |
}
|
|
|
|
| 725 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 726 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 727 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 728 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 729 |
---
|
| 730 |
*Generated by Wikilangs Models Pipeline*
|
| 731 |
|
| 732 |
+
*Report Date: 2026-01-03 10:03:26*
|
models/embeddings/monolingual/bs_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:150a739475c8b2802aaaa35679a6ec5946f23a4489669763729d419b2cf329bf
|
| 3 |
+
size 1381600692
|
models/embeddings/monolingual/bs_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 343142
|
| 15 |
}
|
models/embeddings/monolingual/bs_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5db060f6dd5915bae4076dfd0dea4755e1f4664360e6713434947ebf5dd49b94
|
| 3 |
+
size 350067636
|
models/embeddings/monolingual/bs_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 343142
|
| 15 |
}
|
models/embeddings/monolingual/bs_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:09f0ccc9cb7ef218444a015a72c973a1aa64b7424c24eac2b2b5f999e7bae986
|
| 3 |
+
size 693911988
|
models/embeddings/monolingual/bs_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 343142
|
| 15 |
}
|
models/subword_markov/bs_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c413639e86aff70a1e366f239702d90f57805452729b30f47b449e1b50e9d0d1
|
| 3 |
+
size 236628
|
models/subword_markov/bs_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 3822,
|
| 6 |
+
"total_transitions": 217153057
|
| 7 |
}
|
models/subword_markov/bs_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07af575a720ce0333065d1365fd6f0dc1e9c196dbbdf47dae5915e384670002e
|
| 3 |
+
size 1556026
|
models/subword_markov/bs_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 29614,
|
| 6 |
+
"total_transitions": 217057401
|
| 7 |
}
|
models/subword_markov/bs_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8734e9ff242be1673110fbadecec4921d18b749fab506afd58084c6454f10179
|
| 3 |
+
size 8759226
|
models/subword_markov/bs_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 195969,
|
| 6 |
+
"total_transitions": 216961745
|
| 7 |
}
|
models/subword_markov/bs_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcd4e07fd4b57bbf32facc8ddf98017e371bfdad9f2a2932def87de4cad2a336
|
| 3 |
+
size 32234978
|
models/subword_markov/bs_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 1073568,
|
| 6 |
+
"total_transitions": 216866089
|
| 7 |
}
|
models/subword_ngram/bs_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5088ff625c4275eba000b58efc27a957d0b2fe00df41f79272702d5740b6aa5a
|
| 3 |
+
size 149061
|
models/subword_ngram/bs_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_ngrams": 10932,
|
| 6 |
+
"total_ngrams": 217153057
|
| 7 |
}
|
models/subword_ngram/bs_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:994dcf177eaabe0675b5f4a1b329598035e90a3b5e97cc7f73d373979f3cdd23
|
| 3 |
+
size 1254949
|
models/subword_ngram/bs_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_ngrams": 100952,
|
| 6 |
+
"total_ngrams": 217057401
|
| 7 |
}
|
models/subword_ngram/bs_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9e9075117ccaa25ec707915fefe1acd5957f11ad9c94308474e7238513466d0
|
| 3 |
+
size 7917058
|
models/subword_ngram/bs_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_ngrams": 689562,
|
| 6 |
+
"total_ngrams": 216961745
|
| 7 |
}
|
models/tokenizer/bs_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6009fbe251dc69f2b102003863ae8d942c6cdb255917c51ca2f5748f2025e0b0
|
| 3 |
+
size 511740
|
models/tokenizer/bs_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bs_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f77069e783a7216648e25a6ebc87d0c8bc974ab6c4df1509692cd565a485b703
|
| 3 |
+
size 795090
|
models/tokenizer/bs_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bs_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b340f78c1c205596e8e78b4b37abd3a0af06a9dcb987769156d87e8ae5bc64f
|
| 3 |
+
size 1373883
|
models/tokenizer/bs_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bs_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a827c60064fd24d771a22fb0ed577a444662b37250d01ef94952af5e5f0ea59f
|
| 3 |
+
size 374247
|
models/tokenizer/bs_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/bs_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49eafd3b4bbbba80874eda2ec39ac7b2e78de842040a668fddae30d8d872a494
|
| 3 |
+
size 7547245
|
models/vocabulary/bs_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "bs",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "bs",
|
| 3 |
+
"vocabulary_size": 502911,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.033338017781857625,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.3148584842736538,
|
| 9 |
+
"top_1000": 0.5222226568897175,
|
| 10 |
+
"top_5000": 0.6752045594187739,
|
| 11 |
+
"top_10000": 0.7431974443827949
|
| 12 |
},
|
| 13 |
+
"hapax_count": 590458,
|
| 14 |
+
"hapax_ratio": 0.5400354317709758,
|
| 15 |
+
"total_documents": 95656
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/bs_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec8d96e1bb6fe5416cce99b5c6d8559355a902c39366ee4bac65c211144112c5
|
| 3 |
+
size 99684168
|
models/word_markov/bs_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 1092943,
|
| 6 |
+
"total_transitions": 32700805
|
| 7 |
}
|
models/word_markov/bs_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b7fcee8bc4b37f470ffa1f616fa833e1a90112ecac1f412ad0a81c5ac29b58b
|
| 3 |
+
size 277373494
|
models/word_markov/bs_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 10856748,
|
| 6 |
+
"total_transitions": 32605149
|
| 7 |
}
|
models/word_markov/bs_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ebc2e93fc71d313258da50f1964cefec942b76af63de84a7b0bb64c24a43d04
|
| 3 |
+
size 410403619
|
models/word_markov/bs_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 20575067,
|
| 6 |
+
"total_transitions": 32509493
|
| 7 |
}
|
models/word_markov/bs_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f2ff5216e6ef640bafa4dd312ef8dad995a25afe35a2f47ff855d105c151152
|
| 3 |
+
size 484392746
|
models/word_markov/bs_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_contexts": 24704289,
|
| 6 |
+
"total_transitions": 32413837
|
| 7 |
}
|
models/word_ngram/bs_2gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f83fc5f11c0f8326e29ac35309cbdfb73699a8a949c72b421e41c46db43f6106
|
| 3 |
+
size 9448613
|
models/word_ngram/bs_2gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_ngrams": 657818,
|
| 6 |
+
"total_ngrams": 32700805
|
| 7 |
}
|
models/word_ngram/bs_3gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3babe8520d1c50503b96745109a27db90a3f3ca40452f51c64ae4e06fafd37c8
|
| 3 |
+
size 14627614
|
models/word_ngram/bs_3gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_ngrams": 914717,
|
| 6 |
+
"total_ngrams": 32605149
|
| 7 |
}
|
models/word_ngram/bs_4gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:762b45944f4641b6630a17f47d8317ebdd6446f7959328117df5bc157a98c126
|
| 3 |
+
size 24754896
|
models/word_ngram/bs_4gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bs",
|
| 5 |
+
"unique_ngrams": 1461546,
|
| 6 |
+
"total_ngrams": 32509493
|
| 7 |
}
|
visualizations/embedding_isotropy.png
CHANGED
|
|
visualizations/embedding_norms.png
CHANGED
|
|
visualizations/embedding_similarity.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
visualizations/markov_branching.png
CHANGED
|
|
visualizations/markov_contexts.png
CHANGED
|
|