Upload all models and assets for bn (20251201)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +6 -0
- README.md +578 -0
- models/embeddings/monolingual/bn_128d.bin +3 -0
- models/embeddings/monolingual/bn_128d.meta.json +1 -0
- models/embeddings/monolingual/bn_128d_metadata.json +13 -0
- models/embeddings/monolingual/bn_32d.bin +3 -0
- models/embeddings/monolingual/bn_32d.meta.json +1 -0
- models/embeddings/monolingual/bn_32d_metadata.json +13 -0
- models/embeddings/monolingual/bn_64d.bin +3 -0
- models/embeddings/monolingual/bn_64d.meta.json +1 -0
- models/embeddings/monolingual/bn_64d_metadata.json +13 -0
- models/subword_markov/bn_markov_ctx1_subword.parquet +3 -0
- models/subword_markov/bn_markov_ctx1_subword_metadata.json +7 -0
- models/subword_markov/bn_markov_ctx2_subword.parquet +3 -0
- models/subword_markov/bn_markov_ctx2_subword_metadata.json +7 -0
- models/subword_markov/bn_markov_ctx3_subword.parquet +3 -0
- models/subword_markov/bn_markov_ctx3_subword_metadata.json +7 -0
- models/subword_markov/bn_markov_ctx4_subword.parquet +3 -0
- models/subword_markov/bn_markov_ctx4_subword_metadata.json +7 -0
- models/subword_ngram/bn_2gram_subword.parquet +3 -0
- models/subword_ngram/bn_2gram_subword_metadata.json +7 -0
- models/subword_ngram/bn_3gram_subword.parquet +3 -0
- models/subword_ngram/bn_3gram_subword_metadata.json +7 -0
- models/subword_ngram/bn_4gram_subword.parquet +3 -0
- models/subword_ngram/bn_4gram_subword_metadata.json +7 -0
- models/tokenizer/bn_tokenizer_16k.model +3 -0
- models/tokenizer/bn_tokenizer_16k.vocab +0 -0
- models/tokenizer/bn_tokenizer_32k.model +3 -0
- models/tokenizer/bn_tokenizer_32k.vocab +0 -0
- models/tokenizer/bn_tokenizer_64k.model +3 -0
- models/tokenizer/bn_tokenizer_64k.vocab +0 -0
- models/tokenizer/bn_tokenizer_8k.model +3 -0
- models/tokenizer/bn_tokenizer_8k.vocab +0 -0
- models/vocabulary/bn_vocabulary.parquet +3 -0
- models/vocabulary/bn_vocabulary_metadata.json +16 -0
- models/word_markov/bn_markov_ctx1_word.parquet +3 -0
- models/word_markov/bn_markov_ctx1_word_metadata.json +7 -0
- models/word_markov/bn_markov_ctx2_word.parquet +3 -0
- models/word_markov/bn_markov_ctx2_word_metadata.json +7 -0
- models/word_markov/bn_markov_ctx3_word.parquet +3 -0
- models/word_markov/bn_markov_ctx3_word_metadata.json +7 -0
- models/word_markov/bn_markov_ctx4_word.parquet +3 -0
- models/word_markov/bn_markov_ctx4_word_metadata.json +7 -0
- models/word_ngram/bn_2gram_word.parquet +3 -0
- models/word_ngram/bn_2gram_word_metadata.json +7 -0
- models/word_ngram/bn_3gram_word.parquet +3 -0
- models/word_ngram/bn_3gram_word_metadata.json +7 -0
- models/word_ngram/bn_4gram_word.parquet +3 -0
- models/word_ngram/bn_4gram_word_metadata.json +7 -0
- visualizations/embedding_isotropy.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: bn
|
| 3 |
+
language_name: Bengali
|
| 4 |
+
language_family: indoaryan_eastern
|
| 5 |
+
tags:
|
| 6 |
+
- wikilangs
|
| 7 |
+
- nlp
|
| 8 |
+
- tokenizer
|
| 9 |
+
- embeddings
|
| 10 |
+
- n-gram
|
| 11 |
+
- markov
|
| 12 |
+
- wikipedia
|
| 13 |
+
- monolingual
|
| 14 |
+
- family-indoaryan_eastern
|
| 15 |
+
license: mit
|
| 16 |
+
library_name: wikilangs
|
| 17 |
+
pipeline_tag: feature-extraction
|
| 18 |
+
datasets:
|
| 19 |
+
- omarkamali/wikipedia-monthly
|
| 20 |
+
dataset_info:
|
| 21 |
+
name: wikipedia-monthly
|
| 22 |
+
description: Monthly snapshots of Wikipedia articles across 300+ languages
|
| 23 |
+
metrics:
|
| 24 |
+
- name: best_compression_ratio
|
| 25 |
+
type: compression
|
| 26 |
+
value: 4.983
|
| 27 |
+
- name: best_isotropy
|
| 28 |
+
type: isotropy
|
| 29 |
+
value: 0.8133
|
| 30 |
+
- name: vocabulary_size
|
| 31 |
+
type: vocab
|
| 32 |
+
value: 250463
|
| 33 |
+
generated: 2025-12-28
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# Bengali - Wikilangs Models
|
| 37 |
+
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
+
|
| 39 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Bengali** Wikipedia data.
|
| 40 |
+
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
+
|
| 42 |
+
## 📋 Repository Contents
|
| 43 |
+
|
| 44 |
+
### Models & Assets
|
| 45 |
+
|
| 46 |
+
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3 and 4)
|
| 49 |
+
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions
|
| 51 |
+
- Language Vocabulary
|
| 52 |
+
- Language Statistics
|
| 53 |
+

|
| 54 |
+
|
| 55 |
+
### Analysis and Evaluation
|
| 56 |
+
|
| 57 |
+
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
|
| 58 |
+
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
|
| 59 |
+
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
+
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
+
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
+
- [6. Summary & Recommendations](#6-summary--recommendations)
|
| 63 |
+
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
+
- [Visualizations Index](#visualizations-index)
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
## 1. Tokenizer Evaluation
|
| 68 |
+
|
| 69 |
+

|
| 70 |
+
|
| 71 |
+
### Results
|
| 72 |
+
|
| 73 |
+
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
+
|------------|-------------|---------------|----------|--------------|
|
| 75 |
+
| **8k** | 3.731x | 3.70 | 0.0813% | 2,819,192 |
|
| 76 |
+
| **16k** | 4.228x | 4.19 | 0.0921% | 2,487,647 |
|
| 77 |
+
| **32k** | 4.650x | 4.61 | 0.1013% | 2,262,081 |
|
| 78 |
+
| **64k** | 4.983x 🏆 | 4.94 | 0.1085% | 2,111,066 |
|
| 79 |
+
|
| 80 |
+
### Tokenization Examples
|
| 81 |
+
|
| 82 |
+
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
+
|
| 84 |
+
**Sample 1:** `ইতিহাস
|
| 85 |
+
|
| 86 |
+
ঘটনাবলী
|
| 87 |
+
|
| 88 |
+
জন্ম
|
| 89 |
+
|
| 90 |
+
মৃত্যু
|
| 91 |
+
মিশেল আফলাক
|
| 92 |
+
|
| 93 |
+
ছুটি এবং অন্যান্য
|
| 94 |
+
|
| 95 |
+
বহিঃসংযো...`
|
| 96 |
+
|
| 97 |
+
| Vocab | Tokens | Count |
|
| 98 |
+
|-------|--------|-------|
|
| 99 |
+
| 8k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁মিশ েল ▁আ ফল াক ▁ছ ... (+16 more)` | 26 |
|
| 100 |
+
| 16k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁মিশেল ▁আ ফল াক ▁ছুটি ▁এবং ... (+12 more)` | 22 |
|
| 101 |
+
| 32k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁মিশেল ▁আ ফল াক ▁ছুটি ▁এবং ... (+11 more)` | 21 |
|
| 102 |
+
| 64k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁মিশেল ▁আ ফল াক ▁ছুটি ▁এবং ... (+11 more)` | 21 |
|
| 103 |
+
|
| 104 |
+
**Sample 2:** `চিলমারী ইউনিয়ন নামে বাংলাদেশে মোট ২টি ইউনিয়ন রয়েছে। যথা:
|
| 105 |
+
চিলমারী ইউনিয়ন, চি...`
|
| 106 |
+
|
| 107 |
+
| Vocab | Tokens | Count |
|
| 108 |
+
|-------|--------|-------|
|
| 109 |
+
| 8k | `▁চিল ম ারী ▁ইউনিয়ন ▁নামে ▁বাংলাদেশে ▁মোট ▁২টি ▁ইউনিয়ন ▁রয়েছে ... (+34 more)` | 44 |
|
| 110 |
+
| 16k | `▁চিল মারী ▁ইউনিয়ন ▁নামে ▁বাংলাদেশে ▁মোট ▁২টি ▁ইউনিয়ন ▁রয়েছে । ... (+27 more)` | 37 |
|
| 111 |
+
| 32k | `▁চিল মারী ▁ইউনিয়ন ▁নামে ▁বাংলাদেশে ▁মোট ▁২টি ▁ইউনিয়ন ▁রয়েছে । ... (+24 more)` | 34 |
|
| 112 |
+
| 64k | `▁চিলমারী ▁ইউনিয়ন ▁নামে ▁বাংলাদেশে ▁মোট ▁২টি ▁ইউনিয়ন ▁রয়েছে । ▁যথা ... (+19 more)` | 29 |
|
| 113 |
+
|
| 114 |
+
**Sample 3:** `ইতিহাস
|
| 115 |
+
|
| 116 |
+
ঘটনাবলী
|
| 117 |
+
|
| 118 |
+
জন্ম
|
| 119 |
+
|
| 120 |
+
মৃত্যু
|
| 121 |
+
|
| 122 |
+
ছুটি এবং অন্যান্য
|
| 123 |
+
|
| 124 |
+
বহিঃসংযোগ
|
| 125 |
+
|
| 126 |
+
বিষয়শ্র...`
|
| 127 |
+
|
| 128 |
+
| Vocab | Tokens | Count |
|
| 129 |
+
|-------|--------|-------|
|
| 130 |
+
| 8k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁ছ ুটি ▁এবং ▁অন্যান্য ▁বহিঃসংযোগ ▁বিষয়শ্রেণী ... (+12 more)` | 22 |
|
| 131 |
+
| 16k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁ছুটি ▁এবং ▁অন্যান্য ▁বহিঃসংযোগ ▁বিষয়শ্রেণী : ... (+9 more)` | 19 |
|
| 132 |
+
| 32k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁ছুটি ▁এবং ▁অন্যান্য ▁বহিঃসংযোগ ▁বিষয়শ্রেণী : ... (+9 more)` | 19 |
|
| 133 |
+
| 64k | `▁ইতিহাস ▁ঘটনাবলী ▁জন্ম ▁মৃত্যু ▁ছুটি ▁এবং ▁অন্যান্য ▁বহিঃসংযোগ ▁বিষয়শ্রেণী : ... (+7 more)` | 17 |
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
### Key Findings
|
| 137 |
+
|
| 138 |
+
- **Best Compression:** 64k achieves 4.983x compression
|
| 139 |
+
- **Lowest UNK Rate:** 8k with 0.0813% unknown tokens
|
| 140 |
+
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 141 |
+
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
## 2. N-gram Model Evaluation
|
| 145 |
+
|
| 146 |
+

|
| 147 |
+
|
| 148 |
+

|
| 149 |
+
|
| 150 |
+
### Results
|
| 151 |
+
|
| 152 |
+
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 153 |
+
|--------|------------|---------|----------------|------------------|-------------------|
|
| 154 |
+
| **2-gram** | 1,729 🏆 | 10.76 | 514,602 | 43.5% | 78.4% |
|
| 155 |
+
| **2-gram** | 617 🏆 | 9.27 | 33,180 | 50.6% | 92.9% |
|
| 156 |
+
| **3-gram** | 17,027 | 14.06 | 2,087,238 | 16.5% | 45.3% |
|
| 157 |
+
| **3-gram** | 5,420 | 12.40 | 328,172 | 19.8% | 55.7% |
|
| 158 |
+
| **4-gram** | 101,821 | 16.64 | 6,958,889 | 8.9% | 25.5% |
|
| 159 |
+
| **4-gram** | 30,323 | 14.89 | 1,934,479 | 10.4% | 31.7% |
|
| 160 |
+
|
| 161 |
+
### Top 5 N-grams by Size
|
| 162 |
+
|
| 163 |
+
**2-grams:**
|
| 164 |
+
|
| 165 |
+
| Rank | N-gram | Count |
|
| 166 |
+
|------|--------|-------|
|
| 167 |
+
| 1 | `া র` | 6,292,455 |
|
| 168 |
+
| 2 | `ে র` | 5,308,140 |
|
| 169 |
+
| 3 | `্ র` | 4,972,400 |
|
| 170 |
+
| 4 | `য ়` | 4,738,290 |
|
| 171 |
+
| 5 | `্ য` | 4,282,578 |
|
| 172 |
+
|
| 173 |
+
**3-grams:**
|
| 174 |
+
|
| 175 |
+
| Rank | N-gram | Count |
|
| 176 |
+
|------|--------|-------|
|
| 177 |
+
| 1 | `্ য া` | 2,328,201 |
|
| 178 |
+
| 2 | `্ র ে` | 1,699,814 |
|
| 179 |
+
| 3 | `ি য ়` | 1,654,809 |
|
| 180 |
+
| 4 | `া য ়` | 1,550,712 |
|
| 181 |
+
| 5 | `য ় া` | 1,358,961 |
|
| 182 |
+
|
| 183 |
+
**4-grams:**
|
| 184 |
+
|
| 185 |
+
| Rank | N-gram | Count |
|
| 186 |
+
|------|--------|-------|
|
| 187 |
+
| 1 | `শ ্ র ে` | 1,127,020 |
|
| 188 |
+
| 2 | `ব ি ষয ়` | 1,117,741 |
|
| 189 |
+
| 3 | `্ র ে ণ` | 1,092,505 |
|
| 190 |
+
| 4 | `র ে ণ ী` | 1,077,879 |
|
| 191 |
+
| 5 | `় শ ্ র` | 1,049,641 |
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
### Key Findings
|
| 195 |
+
|
| 196 |
+
- **Best Perplexity:** 2-gram with 617
|
| 197 |
+
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 198 |
+
- **Coverage:** Top-1000 patterns cover ~32% of corpus
|
| 199 |
+
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 200 |
+
|
| 201 |
+
---
|
| 202 |
+
## 3. Markov Chain Evaluation
|
| 203 |
+
|
| 204 |
+

|
| 205 |
+
|
| 206 |
+

|
| 207 |
+
|
| 208 |
+
### Results
|
| 209 |
+
|
| 210 |
+
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 211 |
+
|---------|-------------|------------|------------------|-----------------|----------------|
|
| 212 |
+
| **1** | 0.4721 | 1.387 | 5.55 | 741,598 | 52.8% |
|
| 213 |
+
| **1** | 1.3088 | 2.477 | 9.81 | 11,996 | 0.0% |
|
| 214 |
+
| **2** | 0.3508 | 1.275 | 2.80 | 4,117,166 | 64.9% |
|
| 215 |
+
| **2** | 0.8170 | 1.762 | 6.18 | 117,615 | 18.3% |
|
| 216 |
+
| **3** | 0.2622 | 1.199 | 2.09 | 11,539,749 | 73.8% |
|
| 217 |
+
| **3** | 0.8527 | 1.806 | 4.88 | 727,384 | 14.7% |
|
| 218 |
+
| **4** | 0.2332 🏆 | 1.175 | 1.80 | 24,106,813 | 76.7% |
|
| 219 |
+
| **4** | 0.6914 🏆 | 1.615 | 3.38 | 3,549,554 | 30.9% |
|
| 220 |
+
|
| 221 |
+
### Generated Text Samples
|
| 222 |
+
|
| 223 |
+
Below are text samples generated from each Markov chain model:
|
| 224 |
+
|
| 225 |
+
**Context Size 1:**
|
| 226 |
+
|
| 227 |
+
1. `া র া মর ্ র ু ড ় ঐত ি ল ো নও ধরন ে`
|
| 228 |
+
2. `্ ড০০ তথ ্ ভরশ ী শ া স ৃ হহ ী দ ি ক া`
|
| 229 |
+
3. `ে ণ ী বন ্ দ ্ র ্ টগ ্ ন , দক ্ দ`
|
| 230 |
+
|
| 231 |
+
**Context Size 2:**
|
| 232 |
+
|
| 233 |
+
1. `া র হ া ত ি প ি ত া র া ল ী ব ি প`
|
| 234 |
+
2. `ে র স ্ তর আয ় শ ্ ব া ইর া ক ি ন ব`
|
| 235 |
+
3. `্ র ে ণ ী : য ু ৎ ক ে আমর া ত া ড া`
|
| 236 |
+
|
| 237 |
+
**Context Size 3:**
|
| 238 |
+
|
| 239 |
+
1. `্ য া ঙ ্ ক া য ় য ে শব ্ দ ে গ ু ল`
|
| 240 |
+
2. `্ র ে ণ ী : ১৯৭৯ - এ প ্ রত ি রক ্ ষ ি ত`
|
| 241 |
+
3. `ি য ় ে ছ ে , ত া দ ে র য া ত ি ক ব`
|
| 242 |
+
|
| 243 |
+
**Context Size 4:**
|
| 244 |
+
|
| 245 |
+
1. `শ ্ র ে ণ ী : ১৮০৬ - এ জন ্ ম ব ি ষয ় শ ্`
|
| 246 |
+
2. `ব ি ষয ় শ ্ র ে ণ ী : ভ া রত ী য ় ধ া`
|
| 247 |
+
3. `্ র ে ণ ী : ভ া রত ী য ় স ্ থ ১৯৬৬ - স ৌ`
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
### Key Findings
|
| 251 |
+
|
| 252 |
+
- **Best Predictability:** Context-4 with 76.7% predictability
|
| 253 |
+
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 254 |
+
- **Memory Trade-off:** Larger contexts require more storage (3,549,554 contexts)
|
| 255 |
+
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 256 |
+
|
| 257 |
+
---
|
| 258 |
+
## 4. Vocabulary Analysis
|
| 259 |
+
|
| 260 |
+

|
| 261 |
+
|
| 262 |
+

|
| 263 |
+
|
| 264 |
+

|
| 265 |
+
|
| 266 |
+
### Statistics
|
| 267 |
+
|
| 268 |
+
| Metric | Value |
|
| 269 |
+
|--------|-------|
|
| 270 |
+
| Vocabulary Size | 250,463 |
|
| 271 |
+
| Total Tokens | 201,406,640 |
|
| 272 |
+
| Mean Frequency | 804.14 |
|
| 273 |
+
| Median Frequency | 4 |
|
| 274 |
+
| Frequency Std Dev | 71598.48 |
|
| 275 |
+
|
| 276 |
+
### Most Common Words
|
| 277 |
+
|
| 278 |
+
| Rank | Word | Frequency |
|
| 279 |
+
|------|------|-----------|
|
| 280 |
+
| 1 | র | 21,510,159 |
|
| 281 |
+
| 2 | ন | 11,295,997 |
|
| 282 |
+
| 3 | য | 10,867,520 |
|
| 283 |
+
| 4 | ত | 9,714,992 |
|
| 284 |
+
| 5 | ব | 9,151,878 |
|
| 285 |
+
| 6 | ক | 8,792,666 |
|
| 286 |
+
| 7 | স | 7,892,623 |
|
| 287 |
+
| 8 | ল | 7,373,804 |
|
| 288 |
+
| 9 | প | 5,927,003 |
|
| 289 |
+
| 10 | ম | 5,815,632 |
|
| 290 |
+
|
| 291 |
+
### Least Common Words (from vocabulary)
|
| 292 |
+
|
| 293 |
+
| Rank | Word | Frequency |
|
| 294 |
+
|------|------|-----------|
|
| 295 |
+
| 1 | kovidara | 2 |
|
| 296 |
+
| 2 | ৩৩w | 2 |
|
| 297 |
+
| 3 | vuer | 2 |
|
| 298 |
+
| 4 | ২০১৯২১ | 2 |
|
| 299 |
+
| 5 | dilg | 2 |
|
| 300 |
+
| 6 | দ১70px | 2 |
|
| 301 |
+
| 7 | ciacrimes | 2 |
|
| 302 |
+
| 8 | এএমএইচএস | 2 |
|
| 303 |
+
| 9 | yohanna | 2 |
|
| 304 |
+
| 10 | katanacho | 2 |
|
| 305 |
+
|
| 306 |
+
### Zipf's Law Analysis
|
| 307 |
+
|
| 308 |
+
| Metric | Value |
|
| 309 |
+
|--------|-------|
|
| 310 |
+
| Zipf Coefficient | 1.5776 |
|
| 311 |
+
| R² (Goodness of Fit) | 0.996866 |
|
| 312 |
+
| Adherence Quality | **excellent** |
|
| 313 |
+
|
| 314 |
+
### Coverage Analysis
|
| 315 |
+
|
| 316 |
+
| Top N Words | Coverage |
|
| 317 |
+
|-------------|----------|
|
| 318 |
+
| Top 100 | 81.9% |
|
| 319 |
+
| Top 1,000 | 95.2% |
|
| 320 |
+
| Top 5,000 | 98.2% |
|
| 321 |
+
| Top 10,000 | 98.8% |
|
| 322 |
+
|
| 323 |
+
### Key Findings
|
| 324 |
+
|
| 325 |
+
- **Zipf Compliance:** R²=0.9969 indicates excellent adherence to Zipf's law
|
| 326 |
+
- **High Frequency Dominance:** Top 100 words cover 81.9% of corpus
|
| 327 |
+
- **Long Tail:** 240,463 words needed for remaining 1.2% coverage
|
| 328 |
+
|
| 329 |
+
---
|
| 330 |
+
## 5. Word Embeddings Evaluation
|
| 331 |
+
|
| 332 |
+

|
| 333 |
+
|
| 334 |
+

|
| 335 |
+
|
| 336 |
+

|
| 337 |
+
|
| 338 |
+

|
| 339 |
+
|
| 340 |
+
### Model Comparison
|
| 341 |
+
|
| 342 |
+
| Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
|
| 343 |
+
|-------|------------|-----------|----------|----------|----------|
|
| 344 |
+
| **mono_32d** | 502,529 | 32 | 3.036 | 0.774 | 0.8133 🏆 |
|
| 345 |
+
| **mono_64d** | 502,529 | 64 | 3.445 | 0.763 | 0.7938 |
|
| 346 |
+
| **mono_128d** | 502,529 | 128 | 3.881 | 0.802 | 0.7502 |
|
| 347 |
+
| **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
|
| 348 |
+
|
| 349 |
+
### Key Findings
|
| 350 |
+
|
| 351 |
+
- **Best Isotropy:** mono_32d with 0.8133 (more uniform distribution)
|
| 352 |
+
- **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
|
| 353 |
+
- **Vocabulary Coverage:** All models cover 502,529 words
|
| 354 |
+
- **Recommendation:** 100d for balanced semantic capture and efficiency
|
| 355 |
+
|
| 356 |
+
---
|
| 357 |
+
## 6. Summary & Recommendations
|
| 358 |
+
|
| 359 |
+

|
| 360 |
+
|
| 361 |
+
### Production Recommendations
|
| 362 |
+
|
| 363 |
+
| Component | Recommended | Rationale |
|
| 364 |
+
|-----------|-------------|-----------|
|
| 365 |
+
| Tokenizer | **32k BPE** | Best compression (4.98x) with low UNK rate |
|
| 366 |
+
| N-gram | **5-gram** | Lowest perplexity (617) |
|
| 367 |
+
| Markov | **Context-4** | Highest predictability (76.7%) |
|
| 368 |
+
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 369 |
+
|
| 370 |
+
---
|
| 371 |
+
## Appendix: Metrics Glossary & Interpretation Guide
|
| 372 |
+
|
| 373 |
+
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
|
| 374 |
+
|
| 375 |
+
### Tokenizer Metrics
|
| 376 |
+
|
| 377 |
+
**Compression Ratio**
|
| 378 |
+
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
|
| 379 |
+
>
|
| 380 |
+
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
|
| 381 |
+
>
|
| 382 |
+
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
|
| 383 |
+
|
| 384 |
+
**Average Token Length (Fertility)**
|
| 385 |
+
> *Definition:* Mean number of characters per token produced by the tokenizer.
|
| 386 |
+
>
|
| 387 |
+
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
|
| 388 |
+
>
|
| 389 |
+
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
|
| 390 |
+
|
| 391 |
+
**Unknown Token Rate (OOV Rate)**
|
| 392 |
+
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
|
| 393 |
+
>
|
| 394 |
+
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
|
| 395 |
+
>
|
| 396 |
+
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
|
| 397 |
+
|
| 398 |
+
### N-gram Model Metrics
|
| 399 |
+
|
| 400 |
+
**Perplexity**
|
| 401 |
+
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
|
| 402 |
+
>
|
| 403 |
+
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
|
| 404 |
+
>
|
| 405 |
+
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
|
| 406 |
+
|
| 407 |
+
**Entropy**
|
| 408 |
+
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
|
| 409 |
+
>
|
| 410 |
+
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
|
| 411 |
+
>
|
| 412 |
+
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
|
| 413 |
+
|
| 414 |
+
**Coverage (Top-K)**
|
| 415 |
+
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
|
| 416 |
+
>
|
| 417 |
+
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
|
| 418 |
+
>
|
| 419 |
+
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
|
| 420 |
+
|
| 421 |
+
### Markov Chain Metrics
|
| 422 |
+
|
| 423 |
+
**Average Entropy**
|
| 424 |
+
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
|
| 425 |
+
>
|
| 426 |
+
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
|
| 427 |
+
>
|
| 428 |
+
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
|
| 429 |
+
|
| 430 |
+
**Branching Factor**
|
| 431 |
+
> *Definition:* Average number of unique next tokens observed for each context.
|
| 432 |
+
>
|
| 433 |
+
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
|
| 434 |
+
>
|
| 435 |
+
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
|
| 436 |
+
|
| 437 |
+
**Predictability**
|
| 438 |
+
> *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
|
| 439 |
+
>
|
| 440 |
+
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
|
| 441 |
+
>
|
| 442 |
+
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
|
| 443 |
+
|
| 444 |
+
### Vocabulary & Zipf's Law Metrics
|
| 445 |
+
|
| 446 |
+
**Zipf's Coefficient**
|
| 447 |
+
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
|
| 448 |
+
>
|
| 449 |
+
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
|
| 450 |
+
>
|
| 451 |
+
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
|
| 452 |
+
|
| 453 |
+
**R² (Coefficient of Determination)**
|
| 454 |
+
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
|
| 455 |
+
>
|
| 456 |
+
> *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
|
| 457 |
+
>
|
| 458 |
+
> *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
|
| 459 |
+
|
| 460 |
+
**Vocabulary Coverage**
|
| 461 |
+
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
|
| 462 |
+
>
|
| 463 |
+
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
|
| 464 |
+
>
|
| 465 |
+
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
|
| 466 |
+
|
| 467 |
+
### Word Embedding Metrics
|
| 468 |
+
|
| 469 |
+
**Isotropy**
|
| 470 |
+
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
|
| 471 |
+
>
|
| 472 |
+
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
|
| 473 |
+
>
|
| 474 |
+
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
|
| 475 |
+
|
| 476 |
+
**Average Norm**
|
| 477 |
+
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
|
| 478 |
+
>
|
| 479 |
+
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
|
| 480 |
+
>
|
| 481 |
+
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
|
| 482 |
+
|
| 483 |
+
**Cosine Similarity**
|
| 484 |
+
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
|
| 485 |
+
>
|
| 486 |
+
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
|
| 487 |
+
>
|
| 488 |
+
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
|
| 489 |
+
|
| 490 |
+
**t-SNE Visualization**
|
| 491 |
+
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
|
| 492 |
+
>
|
| 493 |
+
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
|
| 494 |
+
>
|
| 495 |
+
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
|
| 496 |
+
|
| 497 |
+
### General Interpretation Guidelines
|
| 498 |
+
|
| 499 |
+
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
|
| 500 |
+
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
|
| 501 |
+
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
|
| 502 |
+
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
|
| 503 |
+
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
### Visualizations Index
|
| 507 |
+
|
| 508 |
+
| Visualization | Description |
|
| 509 |
+
|---------------|-------------|
|
| 510 |
+
| Tokenizer Compression | Compression ratios by vocabulary size |
|
| 511 |
+
| Tokenizer Fertility | Average token length by vocabulary |
|
| 512 |
+
| Tokenizer OOV | Unknown token rates |
|
| 513 |
+
| Tokenizer Total Tokens | Total tokens by vocabulary |
|
| 514 |
+
| N-gram Perplexity | Perplexity by n-gram size |
|
| 515 |
+
| N-gram Entropy | Entropy by n-gram size |
|
| 516 |
+
| N-gram Coverage | Top pattern coverage |
|
| 517 |
+
| N-gram Unique | Unique n-gram counts |
|
| 518 |
+
| Markov Entropy | Entropy by context size |
|
| 519 |
+
| Markov Branching | Branching factor by context |
|
| 520 |
+
| Markov Contexts | Unique context counts |
|
| 521 |
+
| Zipf's Law | Frequency-rank distribution with fit |
|
| 522 |
+
| Vocab Frequency | Word frequency distribution |
|
| 523 |
+
| Top 20 Words | Most frequent words |
|
| 524 |
+
| Vocab Coverage | Cumulative coverage curve |
|
| 525 |
+
| Embedding Isotropy | Vector space uniformity |
|
| 526 |
+
| Embedding Norms | Vector magnitude distribution |
|
| 527 |
+
| Embedding Similarity | Word similarity heatmap |
|
| 528 |
+
| Nearest Neighbors | Similar words for key terms |
|
| 529 |
+
| t-SNE Words | 2D word embedding visualization |
|
| 530 |
+
| t-SNE Sentences | 2D sentence embedding visualization |
|
| 531 |
+
| Position Encoding | Encoding method comparison |
|
| 532 |
+
| Model Sizes | Storage requirements |
|
| 533 |
+
| Performance Dashboard | Comprehensive performance overview |
|
| 534 |
+
|
| 535 |
+
---
|
| 536 |
+
## About This Project
|
| 537 |
+
|
| 538 |
+
### Data Source
|
| 539 |
+
|
| 540 |
+
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
|
| 541 |
+
|
| 542 |
+
### Project
|
| 543 |
+
|
| 544 |
+
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
|
| 545 |
+
|
| 546 |
+
### Maintainer
|
| 547 |
+
|
| 548 |
+
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
|
| 549 |
+
|
| 550 |
+
### Citation
|
| 551 |
+
|
| 552 |
+
If you use these models in your research, please cite:
|
| 553 |
+
|
| 554 |
+
```bibtex
|
| 555 |
+
@misc{wikilangs2025,
|
| 556 |
+
author = {Kamali, Omar},
|
| 557 |
+
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 558 |
+
year = {2025},
|
| 559 |
+
publisher = {HuggingFace},
|
| 560 |
+
url = {https://huggingface.co/wikilangs}
|
| 561 |
+
institution = {Omneity Labs}
|
| 562 |
+
}
|
| 563 |
+
```
|
| 564 |
+
|
| 565 |
+
### License
|
| 566 |
+
|
| 567 |
+
MIT License - Free for academic and commercial use.
|
| 568 |
+
|
| 569 |
+
### Links
|
| 570 |
+
|
| 571 |
+
- 🌐 Website: [wikilangs.org](https://wikilangs.org)
|
| 572 |
+
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 573 |
+
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 574 |
+
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 575 |
+
---
|
| 576 |
+
*Generated by Wikilangs Models Pipeline*
|
| 577 |
+
|
| 578 |
+
*Report Date: 2025-12-28 07:23:06*
|
models/embeddings/monolingual/bn_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:26e2e2343255830a534f320fde4263aaa50541a543b5fbc99b4a836d1708f6ed
|
| 3 |
+
size 1554303761
|
models/embeddings/monolingual/bn_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bn", "dim": 128, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/bn_128d_metadata.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bn",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"dim": 128,
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 502529
|
| 13 |
+
}
|
models/embeddings/monolingual/bn_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:911654690f1911e79d553aca3a334439dafa8c950bae483cf0c07d3ea4e1772b
|
| 3 |
+
size 400361489
|
models/embeddings/monolingual/bn_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bn", "dim": 32, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/bn_32d_metadata.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bn",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"dim": 32,
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 502529
|
| 13 |
+
}
|
models/embeddings/monolingual/bn_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94bb8ad1b61a560bfdb17d79f222765c5f109aca6fedef51a4f335af7d665217
|
| 3 |
+
size 785008913
|
models/embeddings/monolingual/bn_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bn", "dim": 64, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/bn_64d_metadata.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bn",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"dim": 64,
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5
|
| 11 |
+
},
|
| 12 |
+
"vocab_size": 502529
|
| 13 |
+
}
|
models/subword_markov/bn_markov_ctx1_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13a0b6a9ac2105c1af4f886f06a71d9db23ecb5a32652e818e7c2ddf640bc671
|
| 3 |
+
size 772286
|
models/subword_markov/bn_markov_ctx1_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 11996,
|
| 6 |
+
"total_transitions": 553695182
|
| 7 |
+
}
|
models/subword_markov/bn_markov_ctx2_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1c81da270a2a82d5b8c625aa355045c0a0670e6228e198544f60acda4472ec5
|
| 3 |
+
size 5606771
|
models/subword_markov/bn_markov_ctx2_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 117615,
|
| 6 |
+
"total_transitions": 553516718
|
| 7 |
+
}
|
models/subword_markov/bn_markov_ctx3_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4b88518401525add742d578b9efa13a5511741c545ce0dcc6ceeb6acb7704ab
|
| 3 |
+
size 26159855
|
models/subword_markov/bn_markov_ctx3_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 727384,
|
| 6 |
+
"total_transitions": 553338254
|
| 7 |
+
}
|
models/subword_markov/bn_markov_ctx4_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c54eb916a5048ffb603a48ea1d6d64f6bfe3b00818a8d1bffa427255daa9c99
|
| 3 |
+
size 100901318
|
models/subword_markov/bn_markov_ctx4_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 3549554,
|
| 6 |
+
"total_transitions": 553159790
|
| 7 |
+
}
|
models/subword_ngram/bn_2gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87c44bccc6719de458cb056280276826654f9ecfa18d99048424106a8f1b8f40
|
| 3 |
+
size 469388
|
models/subword_ngram/bn_2gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_ngrams": 33180,
|
| 6 |
+
"total_ngrams": 553695182
|
| 7 |
+
}
|
models/subword_ngram/bn_3gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78fb7840741ea86971d4925542c9e6ce6e6c79ac8ce399abba98433705fb070b
|
| 3 |
+
size 4114566
|
models/subword_ngram/bn_3gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_ngrams": 328172,
|
| 6 |
+
"total_ngrams": 553516718
|
| 7 |
+
}
|
models/subword_ngram/bn_4gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46b2845e143d5e9021ee5b87cb38819dcdfb00f50601547315a5117b4da42688
|
| 3 |
+
size 25302225
|
models/subword_ngram/bn_4gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_ngrams": 1934479,
|
| 6 |
+
"total_ngrams": 553338254
|
| 7 |
+
}
|
models/tokenizer/bn_tokenizer_16k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68e1ac6a6a41154f9552ef7791eb5aaad0d47e5f8c5657a570b191e0f483c20a
|
| 3 |
+
size 641106
|
models/tokenizer/bn_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bn_tokenizer_32k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39be559e8432dcd4b0837f4c1116b1daaaeb8f85ead3a786b09b36cd27681a88
|
| 3 |
+
size 1074049
|
models/tokenizer/bn_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bn_tokenizer_64k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d1cb3f78cd4392dd3e19ff9cde695d104459cebc3f75d35d45933142a9489e9
|
| 3 |
+
size 1967297
|
models/tokenizer/bn_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bn_tokenizer_8k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe2dd93cbc1830854f019c57ff5e0efd8b11fcda823d0bb65cfbbef3ad4eca53
|
| 3 |
+
size 433093
|
models/tokenizer/bn_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/bn_vocabulary.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8da3f061defc453cbf1bb0c1e36b511077f05f0d399b060245d1a6a437f8c4a1
|
| 3 |
+
size 3901209
|
models/vocabulary/bn_vocabulary_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bn",
|
| 3 |
+
"vocabulary_size": 250463,
|
| 4 |
+
"statistics": {
|
| 5 |
+
"type_token_ratio": 0.0036646333232905415,
|
| 6 |
+
"coverage": {
|
| 7 |
+
"top_100": 0.8173536449340773,
|
| 8 |
+
"top_1000": 0.9499165937132837,
|
| 9 |
+
"top_5000": 0.9795696203113472,
|
| 10 |
+
"top_10000": 0.9855947158392181
|
| 11 |
+
},
|
| 12 |
+
"hapax_count": 489412,
|
| 13 |
+
"hapax_ratio": 0.6614793039364758,
|
| 14 |
+
"total_documents": 178464
|
| 15 |
+
}
|
| 16 |
+
}
|
models/word_markov/bn_markov_ctx1_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e4832f62be8b99ea4eeb5d4269e7bbe06d6de2b4621946fad64f9ec22957eea
|
| 3 |
+
size 38908723
|
models/word_markov/bn_markov_ctx1_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 741598,
|
| 6 |
+
"total_transitions": 376897683
|
| 7 |
+
}
|
models/word_markov/bn_markov_ctx2_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4ba7c5295c6739716c57443fe46ae2ac3abef527a4acbe3169b854b8d2cda2f
|
| 3 |
+
size 117081865
|
models/word_markov/bn_markov_ctx2_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 4117166,
|
| 6 |
+
"total_transitions": 376719219
|
| 7 |
+
}
|
models/word_markov/bn_markov_ctx3_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a549e1e8faa30b5a0df58aae56496c8fa1e4c6ee4a74731a88aa60c91e577e74
|
| 3 |
+
size 267027059
|
models/word_markov/bn_markov_ctx3_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 11539749,
|
| 6 |
+
"total_transitions": 376540755
|
| 7 |
+
}
|
models/word_markov/bn_markov_ctx4_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89cc548abb01820903720d01a51c51890b88692832d86bcb209344e00ea779dd
|
| 3 |
+
size 528654949
|
models/word_markov/bn_markov_ctx4_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_contexts": 24106813,
|
| 6 |
+
"total_transitions": 376362293
|
| 7 |
+
}
|
models/word_ngram/bn_2gram_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cae303864fc970c7cc1f5114d7e1fc497c15d5ffe73ff023a5a75b1f487e2440
|
| 3 |
+
size 7351010
|
models/word_ngram/bn_2gram_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_ngrams": 514602,
|
| 6 |
+
"total_ngrams": 376897683
|
| 7 |
+
}
|
models/word_ngram/bn_3gram_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a30750e0ec3ee8a1c69954761f3031b82f408d71010731f6775934668e7641e4
|
| 3 |
+
size 31502716
|
models/word_ngram/bn_3gram_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_ngrams": 2087238,
|
| 6 |
+
"total_ngrams": 376719219
|
| 7 |
+
}
|
models/word_ngram/bn_4gram_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d4ac57a189323e9d54a2b3aef96a23026160aa10063c1d4c12814e420a050d98
|
| 3 |
+
size 107643827
|
models/word_ngram/bn_4gram_word_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "word",
|
| 4 |
+
"language": "bn",
|
| 5 |
+
"unique_ngrams": 6958889,
|
| 6 |
+
"total_ngrams": 376540755
|
| 7 |
+
}
|
visualizations/embedding_isotropy.png
ADDED
|