Upload all models and assets for bbc (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +219 -184
- models/embeddings/aligned/bbc_128d.bin +3 -0
- models/embeddings/aligned/bbc_128d.meta.json +1 -0
- models/embeddings/aligned/bbc_128d.projection.npy +3 -0
- models/embeddings/aligned/bbc_128d_metadata.json +8 -0
- models/embeddings/aligned/bbc_32d.bin +3 -0
- models/embeddings/aligned/bbc_32d.meta.json +1 -0
- models/embeddings/aligned/bbc_32d.projection.npy +3 -0
- models/embeddings/aligned/bbc_32d_metadata.json +8 -0
- models/embeddings/aligned/bbc_64d.bin +3 -0
- models/embeddings/aligned/bbc_64d.meta.json +1 -0
- models/embeddings/aligned/bbc_64d.projection.npy +3 -0
- models/embeddings/aligned/bbc_64d_metadata.json +8 -0
- models/embeddings/monolingual/bbc_128d.bin +2 -2
- models/embeddings/monolingual/bbc_128d_metadata.json +1 -1
- models/embeddings/monolingual/bbc_32d.bin +2 -2
- models/embeddings/monolingual/bbc_32d_metadata.json +1 -1
- models/embeddings/monolingual/bbc_64d.bin +2 -2
- models/embeddings/monolingual/bbc_64d_metadata.json +1 -1
- models/subword_markov/bbc_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/bbc_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/bbc_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/bbc_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/bbc_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/bbc_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/bbc_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/bbc_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/bbc_2gram_subword.parquet +2 -2
- models/subword_ngram/bbc_2gram_subword_metadata.json +2 -2
- models/subword_ngram/bbc_3gram_subword.parquet +2 -2
- models/subword_ngram/bbc_3gram_subword_metadata.json +2 -2
- models/subword_ngram/bbc_4gram_subword.parquet +2 -2
- models/subword_ngram/bbc_4gram_subword_metadata.json +2 -2
- models/subword_ngram/bbc_5gram_subword.parquet +3 -0
- models/subword_ngram/bbc_5gram_subword_metadata.json +7 -0
- models/tokenizer/bbc_tokenizer_16k.model +2 -2
- models/tokenizer/bbc_tokenizer_16k.vocab +0 -0
- models/tokenizer/bbc_tokenizer_32k.model +2 -2
- models/tokenizer/bbc_tokenizer_32k.vocab +0 -0
- models/tokenizer/bbc_tokenizer_8k.model +2 -2
- models/tokenizer/bbc_tokenizer_8k.vocab +0 -0
- models/vocabulary/bbc_vocabulary.parquet +2 -2
- models/vocabulary/bbc_vocabulary_metadata.json +9 -9
- models/word_markov/bbc_markov_ctx1_word.parquet +2 -2
- models/word_markov/bbc_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/bbc_markov_ctx2_word.parquet +2 -2
- models/word_markov/bbc_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/bbc_markov_ctx3_word.parquet +2 -2
- models/word_markov/bbc_markov_ctx3_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: bbc
|
| 3 |
-
language_name:
|
| 4 |
language_family: austronesian_batak
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-austronesian_batak
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 3.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,43 +90,43 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 3.
|
| 85 |
-
| **32k** | 3.
|
| 86 |
|
| 87 |
### Tokenization Examples
|
| 88 |
|
| 89 |
Below are sample sentences tokenized with each vocabulary size:
|
| 90 |
|
| 91 |
-
**Sample 1:** `
|
| 92 |
|
| 93 |
| Vocab | Tokens | Count |
|
| 94 |
|-------|--------|-------|
|
| 95 |
-
| 8k | `▁
|
| 96 |
-
| 16k | `▁
|
| 97 |
-
| 32k | `▁
|
| 98 |
|
| 99 |
-
**Sample 2:** `
|
| 100 |
|
| 101 |
| Vocab | Tokens | Count |
|
| 102 |
|-------|--------|-------|
|
| 103 |
-
| 8k | `▁
|
| 104 |
-
| 16k | `▁
|
| 105 |
-
| 32k | `▁
|
| 106 |
|
| 107 |
-
**Sample 3:** `
|
| 108 |
|
| 109 |
| Vocab | Tokens | Count |
|
| 110 |
|-------|--------|-------|
|
| 111 |
-
| 8k | `▁
|
| 112 |
-
| 16k | `▁
|
| 113 |
-
| 32k | `▁
|
| 114 |
|
| 115 |
|
| 116 |
### Key Findings
|
| 117 |
|
| 118 |
-
- **Best Compression:** 32k achieves 3.
|
| 119 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 120 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 121 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 122 |
|
|
@@ -133,12 +143,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 133 |
|
| 134 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 135 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 136 |
-
| **2-gram** | Word | 8,
|
| 137 |
-
| **2-gram** | Subword | 185 🏆 | 7.53 | 3,
|
| 138 |
-
| **3-gram** | Word | 22,
|
| 139 |
-
| **3-gram** | Subword | 1,
|
| 140 |
-
| **4-gram** | Word | 44,
|
| 141 |
-
| **4-gram** | Subword | 5,
|
|
|
|
|
|
|
| 142 |
|
| 143 |
### Top 5 N-grams by Size
|
| 144 |
|
|
@@ -148,8 +160,8 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 148 |
|------|--------|-------|
|
| 149 |
| 1 | `angka na` | 4,424 |
|
| 150 |
| 2 | `dung i` | 4,327 |
|
| 151 |
-
| 3 | `ni si` | 4,
|
| 152 |
-
| 4 | `i ma` | 3,
|
| 153 |
| 5 | `ni jahowa` | 2,892 |
|
| 154 |
|
| 155 |
**3-grams (Word):**
|
|
@@ -157,57 +169,77 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 157 |
| Rank | N-gram | Count |
|
| 158 |
|------|--------|-------|
|
| 159 |
| 1 | `anak ni si` | 1,613 |
|
| 160 |
-
| 2 | `
|
| 161 |
-
| 3 | `
|
| 162 |
-
| 4 | `
|
| 163 |
-
| 5 | `
|
| 164 |
|
| 165 |
**4-grams (Word):**
|
| 166 |
|
| 167 |
| Rank | N-gram | Count |
|
| 168 |
|------|--------|-------|
|
| 169 |
| 1 | `on do hata ni` | 423 |
|
| 170 |
-
| 2 | `
|
| 171 |
-
| 3 | `
|
| 172 |
-
| 4 | `
|
| 173 |
-
| 5 | `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
**2-grams (Subword):**
|
| 176 |
|
| 177 |
| Rank | N-gram | Count |
|
| 178 |
|------|--------|-------|
|
| 179 |
-
| 1 | `a _` | 206,
|
| 180 |
-
| 2 | `a n` | 205,
|
| 181 |
-
| 3 | `n g` | 154,
|
| 182 |
-
| 4 | `i _` |
|
| 183 |
-
| 5 | `n a` | 122,
|
| 184 |
|
| 185 |
**3-grams (Subword):**
|
| 186 |
|
| 187 |
| Rank | N-gram | Count |
|
| 188 |
|------|--------|-------|
|
| 189 |
-
| 1 | `a n g` | 81,
|
| 190 |
-
| 2 | `_ m a` | 76,
|
| 191 |
-
| 3 | `n a _` | 58,
|
| 192 |
-
| 4 | `_ n a` | 53,
|
| 193 |
-
| 5 | `a n _` | 51,
|
| 194 |
|
| 195 |
**4-grams (Subword):**
|
| 196 |
|
| 197 |
| Rank | N-gram | Count |
|
| 198 |
|------|--------|-------|
|
| 199 |
-
| 1 | `_ n i _` | 34,
|
| 200 |
-
| 2 | `_ n a _` | 33,
|
| 201 |
-
| 3 | `_ d i _` | 25,
|
| 202 |
-
| 4 | `a n g k` | 24,
|
| 203 |
-
| 5 | `_ m a _` | 23,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
|
| 206 |
### Key Findings
|
| 207 |
|
| 208 |
- **Best Perplexity:** 2-gram (subword) with 185
|
| 209 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 210 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 211 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 212 |
|
| 213 |
---
|
|
@@ -223,14 +255,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 223 |
|
| 224 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 225 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 226 |
-
| **1** | Word | 0.
|
| 227 |
-
| **1** | Subword | 0.
|
| 228 |
-
| **2** | Word | 0.
|
| 229 |
-
| **2** | Subword | 0.
|
| 230 |
-
| **3** | Word | 0.
|
| 231 |
-
| **3** | Subword | 0.
|
| 232 |
-
| **4** | Word | 0.
|
| 233 |
-
| **4** | Subword | 0.
|
| 234 |
|
| 235 |
### Generated Text Samples (Word-based)
|
| 236 |
|
|
@@ -238,27 +270,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 238 |
|
| 239 |
**Context Size 1:**
|
| 240 |
|
| 241 |
-
1. `ni
|
| 242 |
-
2. `na
|
| 243 |
-
3. `i
|
| 244 |
|
| 245 |
**Context Size 2:**
|
| 246 |
|
| 247 |
-
1. `angka na
|
| 248 |
-
2. `dung i
|
| 249 |
-
3. `ni si
|
| 250 |
|
| 251 |
**Context Size 3:**
|
| 252 |
|
| 253 |
-
1. `anak ni si
|
| 254 |
-
2. `
|
| 255 |
-
3. `
|
| 256 |
|
| 257 |
**Context Size 4:**
|
| 258 |
|
| 259 |
-
1. `on do hata ni tuhan jahowa
|
| 260 |
-
2. `
|
| 261 |
-
3. `
|
| 262 |
|
| 263 |
|
| 264 |
### Generated Text Samples (Subword-based)
|
|
@@ -267,34 +299,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 267 |
|
| 268 |
**Context Size 1:**
|
| 269 |
|
| 270 |
-
1. `
|
| 271 |
-
2. `
|
| 272 |
-
3. `
|
| 273 |
|
| 274 |
**Context Size 2:**
|
| 275 |
|
| 276 |
-
1. `
|
| 277 |
-
2. `
|
| 278 |
-
3. `
|
| 279 |
|
| 280 |
**Context Size 3:**
|
| 281 |
|
| 282 |
-
1. `
|
| 283 |
-
2. `
|
| 284 |
-
3. `
|
| 285 |
|
| 286 |
**Context Size 4:**
|
| 287 |
|
| 288 |
-
1. `
|
| 289 |
-
2. `
|
| 290 |
-
3. `
|
| 291 |
|
| 292 |
|
| 293 |
### Key Findings
|
| 294 |
|
| 295 |
- **Best Predictability:** Context-4 (word) with 94.1% predictability
|
| 296 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 297 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 298 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 299 |
|
| 300 |
---
|
|
@@ -310,48 +342,48 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 310 |
|
| 311 |
| Metric | Value |
|
| 312 |
|--------|-------|
|
| 313 |
-
| Vocabulary Size | 24,
|
| 314 |
-
| Total Tokens |
|
| 315 |
-
| Mean Frequency | 38.
|
| 316 |
| Median Frequency | 4 |
|
| 317 |
-
| Frequency Std Dev | 557.
|
| 318 |
|
| 319 |
### Most Common Words
|
| 320 |
|
| 321 |
| Rank | Word | Frequency |
|
| 322 |
|------|------|-----------|
|
| 323 |
-
| 1 | ni |
|
| 324 |
-
| 2 | na | 33,
|
| 325 |
-
| 3 | i | 32,
|
| 326 |
-
| 4 | ma | 26,
|
| 327 |
-
| 5 | di |
|
| 328 |
-
| 6 | tu | 20,
|
| 329 |
-
| 7 | do | 19,
|
| 330 |
-
| 8 | angka | 17,
|
| 331 |
-
| 9 | jala | 14,
|
| 332 |
-
| 10 | dohot | 13,
|
| 333 |
|
| 334 |
### Least Common Words (from vocabulary)
|
| 335 |
|
| 336 |
| Rank | Word | Frequency |
|
| 337 |
|------|------|-----------|
|
| 338 |
-
| 1 |
|
| 339 |
-
| 2 |
|
| 340 |
-
| 3 |
|
| 341 |
-
| 4 |
|
| 342 |
-
| 5 |
|
| 343 |
-
| 6 |
|
| 344 |
-
| 7 |
|
| 345 |
-
| 8 |
|
| 346 |
-
| 9 |
|
| 347 |
-
| 10 |
|
| 348 |
|
| 349 |
### Zipf's Law Analysis
|
| 350 |
|
| 351 |
| Metric | Value |
|
| 352 |
|--------|-------|
|
| 353 |
-
| Zipf Coefficient | 1.
|
| 354 |
-
| R² (Goodness of Fit) | 0.
|
| 355 |
| Adherence Quality | **excellent** |
|
| 356 |
|
| 357 |
### Coverage Analysis
|
|
@@ -359,15 +391,15 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 359 |
| Top N Words | Coverage |
|
| 360 |
|-------------|----------|
|
| 361 |
| Top 100 | 53.7% |
|
| 362 |
-
| Top 1,000 | 78.
|
| 363 |
| Top 5,000 | 91.4% |
|
| 364 |
| Top 10,000 | 95.7% |
|
| 365 |
|
| 366 |
### Key Findings
|
| 367 |
|
| 368 |
-
- **Zipf Compliance:** R²=0.
|
| 369 |
- **High Frequency Dominance:** Top 100 words cover 53.7% of corpus
|
| 370 |
-
- **Long Tail:** 14,
|
| 371 |
|
| 372 |
---
|
| 373 |
## 5. Word Embeddings Evaluation
|
|
@@ -383,37 +415,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 383 |
|
| 384 |
### 5.1 Cross-Lingual Alignment
|
| 385 |
|
| 386 |
-
|
|
|
|
|
|
|
| 387 |
|
| 388 |
|
| 389 |
### 5.2 Model Comparison
|
| 390 |
|
| 391 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 392 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 393 |
-
| **mono_32d** | 32 | 0.
|
| 394 |
-
| **mono_64d** | 64 | 0.
|
| 395 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
### Key Findings
|
| 398 |
|
| 399 |
-
- **Best Isotropy:**
|
| 400 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 401 |
-
- **Alignment Quality:**
|
| 402 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 403 |
|
| 404 |
---
|
| 405 |
## 6. Morphological Analysis (Experimental)
|
| 406 |
|
| 407 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 408 |
-
|
| 409 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 410 |
|
| 411 |
### 6.1 Productivity & Complexity
|
| 412 |
|
| 413 |
| Metric | Value | Interpretation | Recommendation |
|
| 414 |
|--------|-------|----------------|----------------|
|
| 415 |
-
| Productivity Index | **
|
| 416 |
-
| Idiomaticity Gap | **-
|
| 417 |
|
| 418 |
### 6.2 Affix Inventory (Productive Units)
|
| 419 |
|
|
@@ -422,26 +457,26 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 422 |
#### Productive Prefixes
|
| 423 |
| Prefix | Examples |
|
| 424 |
|--------|----------|
|
| 425 |
-
| `-
|
| 426 |
-
| `-
|
| 427 |
-
| `-di` |
|
| 428 |
-
| `-
|
| 429 |
-
| `-
|
| 430 |
-
| `-
|
| 431 |
-
| `-par` |
|
| 432 |
-
| `-
|
| 433 |
|
| 434 |
#### Productive Suffixes
|
| 435 |
| Suffix | Examples |
|
| 436 |
|--------|----------|
|
| 437 |
-
| `-n` |
|
| 438 |
-
| `-a` |
|
| 439 |
-
| `-on` |
|
| 440 |
-
| `-
|
| 441 |
-
| `-
|
| 442 |
-
| `-
|
| 443 |
-
| `-
|
| 444 |
-
| `-nna` |
|
| 445 |
|
| 446 |
### 6.3 Bound Stems (Lexical Roots)
|
| 447 |
|
|
@@ -449,18 +484,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 449 |
|
| 450 |
| Stem | Cohesion | Substitutability | Examples |
|
| 451 |
|------|----------|------------------|----------|
|
| 452 |
-
| `anga` | 1.
|
| 453 |
-
| `angk` | 1.
|
| 454 |
-
| `
|
| 455 |
-
| `
|
| 456 |
-
| `ngko` | 1.
|
| 457 |
-
| `
|
| 458 |
-
| `
|
| 459 |
-
| `
|
| 460 |
-
| `bahe` | 1.
|
| 461 |
-
| `
|
| 462 |
-
| `
|
| 463 |
-
| `
|
| 464 |
|
| 465 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 466 |
|
|
@@ -468,16 +503,16 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
|
|
| 468 |
|
| 469 |
| Prefix | Suffix | Frequency | Examples |
|
| 470 |
|--------|--------|-----------|----------|
|
| 471 |
-
| `-pa` | `-n` |
|
| 472 |
-
| `-ma` | `-n` |
|
| 473 |
-
| `-pa` | `-on` |
|
| 474 |
-
| `-pa` | `-a` |
|
| 475 |
-
| `-pa` | `-an` |
|
| 476 |
-
| `-di` | `-n` |
|
| 477 |
-
| `-
|
| 478 |
-
| `-
|
| 479 |
-
| `-
|
| 480 |
-
| `-
|
| 481 |
|
| 482 |
### 6.5 Recursive Morpheme Segmentation
|
| 483 |
|
|
@@ -485,26 +520,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 485 |
|
| 486 |
| Word | Suggested Split | Confidence | Stem |
|
| 487 |
|------|-----------------|------------|------|
|
| 488 |
-
|
|
| 489 |
-
|
|
| 490 |
-
|
|
| 491 |
-
|
|
| 492 |
-
|
|
| 493 |
-
|
|
| 494 |
-
|
|
| 495 |
-
|
|
| 496 |
-
|
|
| 497 |
-
|
|
| 498 |
-
|
|
| 499 |
-
|
|
| 500 |
-
|
|
| 501 |
-
|
|
| 502 |
-
|
|
| 503 |
|
| 504 |
### 6.6 Linguistic Interpretation
|
| 505 |
|
| 506 |
> **Automated Insight:**
|
| 507 |
-
The language
|
| 508 |
|
| 509 |
---
|
| 510 |
## 7. Summary & Recommendations
|
|
@@ -731,4 +766,4 @@ MIT License - Free for academic and commercial use.
|
|
| 731 |
---
|
| 732 |
*Generated by Wikilangs Models Pipeline*
|
| 733 |
|
| 734 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: bbc
|
| 3 |
+
language_name: Batak Toba
|
| 4 |
language_family: austronesian_batak
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-austronesian_batak
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 3.662
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8133
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Batak Toba - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Batak Toba** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.300x | 3.30 | 0.2266% | 1,666,856 |
|
| 94 |
+
| **16k** | 3.529x | 3.53 | 0.2423% | 1,558,753 |
|
| 95 |
+
| **32k** | 3.662x 🏆 | 3.66 | 0.2515% | 1,502,009 |
|
| 96 |
|
| 97 |
### Tokenization Examples
|
| 98 |
|
| 99 |
Below are sample sentences tokenized with each vocabulary size:
|
| 100 |
|
| 101 |
+
**Sample 1:** `Janji i ma sada huta (desa) na adong di Kecamatan Siempat Nempu Hilir, Kabupaten...`
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁janji ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+16 more)` | 26 |
|
| 106 |
+
| 16k | `▁janji ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+16 more)` | 26 |
|
| 107 |
+
| 32k | `▁janji ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+16 more)` | 26 |
|
| 108 |
|
| 109 |
+
**Sample 2:** `Siboras i ma sada huta (desa) na adong di Kecamatan Silima Pungga Pungga, Kabupa...`
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
+
| 8k | `▁sib oras ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ... (+16 more)` | 26 |
|
| 114 |
+
| 16k | `▁siboras ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+15 more)` | 25 |
|
| 115 |
+
| 32k | `▁siboras ▁i ▁ma ▁sada ▁huta ▁( desa ) ▁na ▁adong ... (+15 more)` | 25 |
|
| 116 |
|
| 117 |
+
**Sample 3:** `Sukorejo i ma sada huta na adong di Kecamatan Ulujami, Kabupaten Pemalang, Propi...`
|
| 118 |
|
| 119 |
| Vocab | Tokens | Count |
|
| 120 |
|-------|--------|-------|
|
| 121 |
+
| 8k | `▁suk orejo ▁i ▁ma ▁sada ▁huta ▁na ▁adong ▁di ▁kecamatan ... (+11 more)` | 21 |
|
| 122 |
+
| 16k | `▁sukorejo ▁i ▁ma ▁sada ▁huta ▁na ▁adong ▁di ▁kecamatan ▁ulujami ... (+10 more)` | 20 |
|
| 123 |
+
| 32k | `▁sukorejo ▁i ▁ma ▁sada ▁huta ▁na ▁adong ▁di ▁kecamatan ▁ulujami ... (+10 more)` | 20 |
|
| 124 |
|
| 125 |
|
| 126 |
### Key Findings
|
| 127 |
|
| 128 |
+
- **Best Compression:** 32k achieves 3.662x compression
|
| 129 |
+
- **Lowest UNK Rate:** 8k with 0.2266% unknown tokens
|
| 130 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 131 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 132 |
|
|
|
|
| 143 |
|
| 144 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 145 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 146 |
+
| **2-gram** | Word | 8,503 | 13.05 | 26,404 | 17.5% | 42.9% |
|
| 147 |
+
| **2-gram** | Subword | 185 🏆 | 7.53 | 3,447 | 77.7% | 99.2% |
|
| 148 |
+
| **3-gram** | Word | 22,449 | 14.45 | 43,137 | 8.4% | 25.3% |
|
| 149 |
+
| **3-gram** | Subword | 1,216 | 10.25 | 18,046 | 38.1% | 83.2% |
|
| 150 |
+
| **4-gram** | Word | 44,360 | 15.44 | 67,584 | 5.9% | 16.2% |
|
| 151 |
+
| **4-gram** | Subword | 5,587 | 12.45 | 70,061 | 19.7% | 54.7% |
|
| 152 |
+
| **5-gram** | Word | 29,774 | 14.86 | 42,910 | 7.1% | 18.6% |
|
| 153 |
+
| **5-gram** | Subword | 17,403 | 14.09 | 153,430 | 12.1% | 36.7% |
|
| 154 |
|
| 155 |
### Top 5 N-grams by Size
|
| 156 |
|
|
|
|
| 160 |
|------|--------|-------|
|
| 161 |
| 1 | `angka na` | 4,424 |
|
| 162 |
| 2 | `dung i` | 4,327 |
|
| 163 |
+
| 3 | `ni si` | 4,060 |
|
| 164 |
+
| 4 | `i ma` | 3,682 |
|
| 165 |
| 5 | `ni jahowa` | 2,892 |
|
| 166 |
|
| 167 |
**3-grams (Word):**
|
|
|
|
| 169 |
| Rank | N-gram | Count |
|
| 170 |
|------|--------|-------|
|
| 171 |
| 1 | `anak ni si` | 1,613 |
|
| 172 |
+
| 2 | `i ma sada` | 784 |
|
| 173 |
+
| 3 | `na adong di` | 741 |
|
| 174 |
+
| 4 | `dung i ninna` | 735 |
|
| 175 |
+
| 5 | `hata ni jahowa` | 703 |
|
| 176 |
|
| 177 |
**4-grams (Word):**
|
| 178 |
|
| 179 |
| Rank | N-gram | Count |
|
| 180 |
|------|--------|-------|
|
| 181 |
| 1 | `on do hata ni` | 423 |
|
| 182 |
+
| 2 | `i ma sada huta` | 417 |
|
| 183 |
+
| 3 | `songon on do hata` | 408 |
|
| 184 |
+
| 4 | `na adong di kecamatan` | 353 |
|
| 185 |
+
| 5 | `angka anak ni si` | 336 |
|
| 186 |
+
|
| 187 |
+
**5-grams (Word):**
|
| 188 |
+
|
| 189 |
+
| Rank | N-gram | Count |
|
| 190 |
+
|------|--------|-------|
|
| 191 |
+
| 1 | `songon on do hata ni` | 406 |
|
| 192 |
+
| 2 | `on do hata ni jahowa` | 250 |
|
| 193 |
+
| 3 | `i ma sada huta na` | 215 |
|
| 194 |
+
| 4 | `desa na adong di kecamatan` | 191 |
|
| 195 |
+
| 5 | `km jala godang ni ruasna` | 175 |
|
| 196 |
|
| 197 |
**2-grams (Subword):**
|
| 198 |
|
| 199 |
| Rank | N-gram | Count |
|
| 200 |
|------|--------|-------|
|
| 201 |
+
| 1 | `a _` | 206,965 |
|
| 202 |
+
| 2 | `a n` | 205,323 |
|
| 203 |
+
| 3 | `n g` | 154,062 |
|
| 204 |
+
| 4 | `i _` | 142,882 |
|
| 205 |
+
| 5 | `n a` | 122,548 |
|
| 206 |
|
| 207 |
**3-grams (Subword):**
|
| 208 |
|
| 209 |
| Rank | N-gram | Count |
|
| 210 |
|------|--------|-------|
|
| 211 |
+
| 1 | `a n g` | 81,918 |
|
| 212 |
+
| 2 | `_ m a` | 76,355 |
|
| 213 |
+
| 3 | `n a _` | 58,981 |
|
| 214 |
+
| 4 | `_ n a` | 53,557 |
|
| 215 |
+
| 5 | `a n _` | 51,287 |
|
| 216 |
|
| 217 |
**4-grams (Subword):**
|
| 218 |
|
| 219 |
| Rank | N-gram | Count |
|
| 220 |
|------|--------|-------|
|
| 221 |
+
| 1 | `_ n i _` | 34,904 |
|
| 222 |
+
| 2 | `_ n a _` | 33,621 |
|
| 223 |
+
| 3 | `_ d i _` | 25,919 |
|
| 224 |
+
| 4 | `a n g k` | 24,948 |
|
| 225 |
+
| 5 | `_ m a _` | 23,827 |
|
| 226 |
+
|
| 227 |
+
**5-grams (Subword):**
|
| 228 |
+
|
| 229 |
+
| Rank | N-gram | Count |
|
| 230 |
+
|------|--------|-------|
|
| 231 |
+
| 1 | `a n g k a` | 19,235 |
|
| 232 |
+
| 2 | `_ a n g k` | 17,946 |
|
| 233 |
+
| 3 | `n g k a _` | 17,765 |
|
| 234 |
+
| 4 | `_ j a l a` | 14,671 |
|
| 235 |
+
| 5 | `j a l a _` | 14,594 |
|
| 236 |
|
| 237 |
|
| 238 |
### Key Findings
|
| 239 |
|
| 240 |
- **Best Perplexity:** 2-gram (subword) with 185
|
| 241 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 242 |
+
- **Coverage:** Top-1000 patterns cover ~37% of corpus
|
| 243 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 244 |
|
| 245 |
---
|
|
|
|
| 255 |
|
| 256 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 257 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 258 |
+
| **1** | Word | 0.9199 | 1.892 | 6.44 | 50,491 | 8.0% |
|
| 259 |
+
| **1** | Subword | 0.9288 | 1.904 | 7.09 | 1,431 | 7.1% |
|
| 260 |
+
| **2** | Word | 0.3746 | 1.296 | 2.02 | 324,952 | 62.5% |
|
| 261 |
+
| **2** | Subword | 0.7034 | 1.628 | 4.04 | 10,144 | 29.7% |
|
| 262 |
+
| **3** | Word | 0.1537 | 1.112 | 1.28 | 656,964 | 84.6% |
|
| 263 |
+
| **3** | Subword | 0.6472 | 1.566 | 3.17 | 40,950 | 35.3% |
|
| 264 |
+
| **4** | Word | 0.0591 🏆 | 1.042 | 1.09 | 838,369 | 94.1% |
|
| 265 |
+
| **4** | Subword | 0.5206 | 1.435 | 2.40 | 129,601 | 47.9% |
|
| 266 |
|
| 267 |
### Generated Text Samples (Word-based)
|
| 268 |
|
|
|
|
| 270 |
|
| 271 |
**Context Size 1:**
|
| 272 |
|
| 273 |
+
1. `ni tano naung leleng on marupaya maningkathon kesadaran masarakat na pauli pintu ni si hannas dohot`
|
| 274 |
+
2. `na talup do angka naposongku alai anggo raoanna nang jahudi tubu ni halak batak di tongatongamu`
|
| 275 |
+
3. `i si arni anak ni harangan na mengatur istimewa dok gumodang sian saluhut na nidabuna i`
|
| 276 |
|
| 277 |
**Context Size 2:**
|
| 278 |
|
| 279 |
+
1. `angka na di ginjang ni angka ompunami umbahen manjadi angka i tu ahu do jahowa molo ahu`
|
| 280 |
+
2. `dung i ro di salelenglelengna psalmen 94 94 1 ale anaha sai parateatehon hamu panariason ni bibirhon`
|
| 281 |
+
3. `ni si jakkob anak ni si rehabeam di jerusalem 7 17 dua lombu lima birubiru tunggal sada`
|
| 282 |
|
| 283 |
**Context Size 3:**
|
| 284 |
|
| 285 |
+
1. `anak ni si aron hahanasida i marhalado di joro ni jahowa tungkan jolo ni rimberimbe i 40 27`
|
| 286 |
+
2. `i ma sada nagara na maringanan di lobu panjang`
|
| 287 |
+
3. `na adong di halak batak toba tombur tarbahen sian sibuk ni manuk na dibumbui`
|
| 288 |
|
| 289 |
**Context Size 4:**
|
| 290 |
|
| 291 |
+
1. `on do hata ni tuhan jahowa nunga pola hupatoltol tanganku maruari ingkon lehononku do i tu ompumuna ...`
|
| 292 |
+
2. `i ma sada huta na adong di kecamatan silima pungga pungga kabupaten dairi propinsi sumatera utara in...`
|
| 293 |
+
3. `songon on do hata ni tuhan jahowa hape so tutu jahowa mandok 22 29 ia situan na torop isi`
|
| 294 |
|
| 295 |
|
| 296 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 299 |
|
| 300 |
**Context Size 1:**
|
| 301 |
|
| 302 |
+
1. `_man_i_sa_nina_s`
|
| 303 |
+
2. `amai_palalaseu_n`
|
| 304 |
+
3. `ndi_ᯔ_no_pa_de_d`
|
| 305 |
|
| 306 |
**Context Size 2:**
|
| 307 |
|
| 308 |
+
1. `a_lamar_na._jalut`
|
| 309 |
+
2. `ani_ni_ahit_bando`
|
| 310 |
+
3. `ng_dongkop_hot_ad`
|
| 311 |
|
| 312 |
**Context Size 3:**
|
| 313 |
|
| 314 |
+
1. `angitlawa_rajai,_d`
|
| 315 |
+
2. `_marhalahite_hite_`
|
| 316 |
+
3. `na_sapangku_imbolo`
|
| 317 |
|
| 318 |
**Context Size 4:**
|
| 319 |
|
| 320 |
+
1. `_ni_jahowa_hamu_ang`
|
| 321 |
+
2. `_na_marsaro_mameuth`
|
| 322 |
+
3. `_di_jeremia_7_novem`
|
| 323 |
|
| 324 |
|
| 325 |
### Key Findings
|
| 326 |
|
| 327 |
- **Best Predictability:** Context-4 (word) with 94.1% predictability
|
| 328 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 329 |
+
- **Memory Trade-off:** Larger contexts require more storage (129,601 contexts)
|
| 330 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 331 |
|
| 332 |
---
|
|
|
|
| 342 |
|
| 343 |
| Metric | Value |
|
| 344 |
|--------|-------|
|
| 345 |
+
| Vocabulary Size | 24,923 |
|
| 346 |
+
| Total Tokens | 971,594 |
|
| 347 |
+
| Mean Frequency | 38.98 |
|
| 348 |
| Median Frequency | 4 |
|
| 349 |
+
| Frequency Std Dev | 557.86 |
|
| 350 |
|
| 351 |
### Most Common Words
|
| 352 |
|
| 353 |
| Rank | Word | Frequency |
|
| 354 |
|------|------|-----------|
|
| 355 |
+
| 1 | ni | 34,971 |
|
| 356 |
+
| 2 | na | 33,958 |
|
| 357 |
+
| 3 | i | 32,913 |
|
| 358 |
+
| 4 | ma | 26,658 |
|
| 359 |
+
| 5 | di | 25,940 |
|
| 360 |
+
| 6 | tu | 20,429 |
|
| 361 |
+
| 7 | do | 19,116 |
|
| 362 |
+
| 8 | angka | 17,411 |
|
| 363 |
+
| 9 | jala | 14,584 |
|
| 364 |
+
| 10 | dohot | 13,515 |
|
| 365 |
|
| 366 |
### Least Common Words (from vocabulary)
|
| 367 |
|
| 368 |
| Rank | Word | Frequency |
|
| 369 |
|------|------|-----------|
|
| 370 |
+
| 1 | ᯇᯔᯒᯪᯉ᯲ᯖ | 2 |
|
| 371 |
+
| 2 | kayo | 2 |
|
| 372 |
+
| 3 | uttar | 2 |
|
| 373 |
+
| 4 | ltr | 2 |
|
| 374 |
+
| 5 | font | 2 |
|
| 375 |
+
| 6 | ebrima | 2 |
|
| 376 |
+
| 7 | border | 2 |
|
| 377 |
+
| 8 | cellpadding | 2 |
|
| 378 |
+
| 9 | td | 2 |
|
| 379 |
+
| 10 | align | 2 |
|
| 380 |
|
| 381 |
### Zipf's Law Analysis
|
| 382 |
|
| 383 |
| Metric | Value |
|
| 384 |
|--------|-------|
|
| 385 |
+
| Zipf Coefficient | 1.1806 |
|
| 386 |
+
| R² (Goodness of Fit) | 0.997033 |
|
| 387 |
| Adherence Quality | **excellent** |
|
| 388 |
|
| 389 |
### Coverage Analysis
|
|
|
|
| 391 |
| Top N Words | Coverage |
|
| 392 |
|-------------|----------|
|
| 393 |
| Top 100 | 53.7% |
|
| 394 |
+
| Top 1,000 | 78.5% |
|
| 395 |
| Top 5,000 | 91.4% |
|
| 396 |
| Top 10,000 | 95.7% |
|
| 397 |
|
| 398 |
### Key Findings
|
| 399 |
|
| 400 |
+
- **Zipf Compliance:** R²=0.9970 indicates excellent adherence to Zipf's law
|
| 401 |
- **High Frequency Dominance:** Top 100 words cover 53.7% of corpus
|
| 402 |
+
- **Long Tail:** 14,923 words needed for remaining 4.3% coverage
|
| 403 |
|
| 404 |
---
|
| 405 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 415 |
|
| 416 |
### 5.1 Cross-Lingual Alignment
|
| 417 |
|
| 418 |
+

|
| 419 |
+
|
| 420 |
+

|
| 421 |
|
| 422 |
|
| 423 |
### 5.2 Model Comparison
|
| 424 |
|
| 425 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 426 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 427 |
+
| **mono_32d** | 32 | 0.8133 | 0.3464 | N/A | N/A |
|
| 428 |
+
| **mono_64d** | 64 | 0.7715 | 0.2725 | N/A | N/A |
|
| 429 |
+
| **mono_128d** | 128 | 0.4709 | 0.2523 | N/A | N/A |
|
| 430 |
+
| **aligned_32d** | 32 | 0.8133 🏆 | 0.3386 | 0.0140 | 0.1240 |
|
| 431 |
+
| **aligned_64d** | 64 | 0.7715 | 0.2780 | 0.0560 | 0.2460 |
|
| 432 |
+
| **aligned_128d** | 128 | 0.4709 | 0.2525 | 0.1340 | 0.3160 |
|
| 433 |
|
| 434 |
### Key Findings
|
| 435 |
|
| 436 |
+
- **Best Isotropy:** aligned_32d with 0.8133 (more uniform distribution)
|
| 437 |
+
- **Semantic Density:** Average pairwise similarity of 0.2900. Lower values indicate better semantic separation.
|
| 438 |
+
- **Alignment Quality:** Aligned models achieve up to 13.4% R@1 in cross-lingual retrieval.
|
| 439 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 440 |
|
| 441 |
---
|
| 442 |
## 6. Morphological Analysis (Experimental)
|
| 443 |
|
|
|
|
|
|
|
| 444 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 445 |
|
| 446 |
### 6.1 Productivity & Complexity
|
| 447 |
|
| 448 |
| Metric | Value | Interpretation | Recommendation |
|
| 449 |
|--------|-------|----------------|----------------|
|
| 450 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 451 |
+
| Idiomaticity Gap | **-0.493** | Low formulaic content | - |
|
| 452 |
|
| 453 |
### 6.2 Affix Inventory (Productive Units)
|
| 454 |
|
|
|
|
| 457 |
#### Productive Prefixes
|
| 458 |
| Prefix | Examples |
|
| 459 |
|--------|----------|
|
| 460 |
+
| `-ma` | mangain, manuhati, mamingkiri |
|
| 461 |
+
| `-pa` | pangir, pahosing, parsonduk |
|
| 462 |
+
| `-di` | disiorhon, didege, diri |
|
| 463 |
+
| `-man` | mangain, manuhati, mangkasiholi |
|
| 464 |
+
| `-mar` | marilah, marhabanhaban, marnioli |
|
| 465 |
+
| `-ha` | hapistaranmuna, harajaon, hanna |
|
| 466 |
+
| `-par` | parsonduk, partalianta, parnidaan |
|
| 467 |
+
| `-si` | sitorus, sitalutuk, sinimpan |
|
| 468 |
|
| 469 |
#### Productive Suffixes
|
| 470 |
| Suffix | Examples |
|
| 471 |
|--------|----------|
|
| 472 |
+
| `-n` | disiorhon, mangain, getasan |
|
| 473 |
+
| `-a` | acara, opatsa, hapistaranmuna |
|
| 474 |
+
| `-on` | disiorhon, harajaon, mandaon |
|
| 475 |
+
| `-an` | getasan, nangkohan, bulanan |
|
| 476 |
+
| `-na` | hapistaranmuna, etonganna, utamana |
|
| 477 |
+
| `-hon` | disiorhon, hinungkuphon, ditoishon |
|
| 478 |
+
| `-ng` | humosing, pahosing, taretong |
|
| 479 |
+
| `-nna` | etonganna, hanna, salpuanna |
|
| 480 |
|
| 481 |
### 6.3 Bound Stems (Lexical Roots)
|
| 482 |
|
|
|
|
| 484 |
|
| 485 |
| Stem | Cohesion | Substitutability | Examples |
|
| 486 |
|------|----------|------------------|----------|
|
| 487 |
+
| `anga` | 1.61x | 127 contexts | angan, langa, sanga |
|
| 488 |
+
| `angk` | 1.53x | 157 contexts | angka, bangko, angkal |
|
| 489 |
+
| `ngka` | 1.56x | 89 contexts | angka, bungka, engkau |
|
| 490 |
+
| `mang` | 1.64x | 61 contexts | amang, mangan, memang |
|
| 491 |
+
| `ngko` | 1.70x | 42 contexts | bangko, ingkon, angkot |
|
| 492 |
+
| `bang` | 1.45x | 72 contexts | bange, abang, bangis |
|
| 493 |
+
| `ingk` | 1.48x | 60 contexts | lingka, ingkau, ingkon |
|
| 494 |
+
| `onga` | 1.68x | 36 contexts | tonga, longa, bongal |
|
| 495 |
+
| `bahe` | 1.79x | 26 contexts | bahen, dibahe, ibahen |
|
| 496 |
+
| `ngan` | 1.40x | 65 contexts | angan, ingan, mangan |
|
| 497 |
+
| `ongo` | 1.62x | 36 contexts | longo, kongo, rongom |
|
| 498 |
+
| `angg` | 1.31x | 78 contexts | anggi, anggo, angguk |
|
| 499 |
|
| 500 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 501 |
|
|
|
|
| 503 |
|
| 504 |
| Prefix | Suffix | Frequency | Examples |
|
| 505 |
|--------|--------|-----------|----------|
|
| 506 |
+
| `-pa` | `-n` | 358 words | parsapataan, partingkian |
|
| 507 |
+
| `-ma` | `-n` | 206 words | marpadanpadan, marharajaon |
|
| 508 |
+
| `-pa` | `-on` | 200 words | patoltolhon, paimbarhon |
|
| 509 |
+
| `-pa` | `-a` | 184 words | pallawa, pasalihonsa |
|
| 510 |
+
| `-pa` | `-an` | 157 words | parsapataan, partingkian |
|
| 511 |
+
| `-di` | `-n` | 156 words | disiaphon, dilembagahon |
|
| 512 |
+
| `-di` | `-on` | 134 words | disiaphon, dilembagahon |
|
| 513 |
+
| `-ha` | `-n` | 128 words | hasundatan, hasusaan |
|
| 514 |
+
| `-pa` | `-na` | 119 words | parsuhatonmuna, pabalionna |
|
| 515 |
+
| `-ma` | `-on` | 116 words | marharajaon, mangaluhon |
|
| 516 |
|
| 517 |
### 6.5 Recursive Morpheme Segmentation
|
| 518 |
|
|
|
|
| 520 |
|
| 521 |
| Word | Suggested Split | Confidence | Stem |
|
| 522 |
|------|-----------------|------------|------|
|
| 523 |
+
| pabotohononku | **`pa-boto-hon-on-ku`** | 9.0 | `boto` |
|
| 524 |
+
| paradiananku | **`par-adian-an-ku`** | 7.5 | `adian` |
|
| 525 |
+
| sipasahaton | **`si-pa-sahat-on`** | 7.5 | `sahat` |
|
| 526 |
+
| marparmangsian | **`mar-par-mang-sian`** | 7.5 | `sian` |
|
| 527 |
+
| panailingku | **`pan-aili-ng-ku`** | 7.5 | `aili` |
|
| 528 |
+
| pardonganan | **`par-dong-an-an`** | 7.5 | `dong` |
|
| 529 |
+
| marhamuliaon | **`mar-ha-mulia-on`** | 7.5 | `mulia` |
|
| 530 |
+
| diparsiajari | **`di-par-si-ajari`** | 7.5 | `ajari` |
|
| 531 |
+
| sipaingotna | **`si-pa-ingot-na`** | 7.5 | `ingot` |
|
| 532 |
+
| sipatudoson | **`si-pa-tudos-on`** | 7.5 | `tudos` |
|
| 533 |
+
| dipangasahon | **`di-pan-gasa-hon`** | 7.5 | `gasa` |
|
| 534 |
+
| situtungon | **`si-tutu-ng-on`** | 7.5 | `tutu` |
|
| 535 |
+
| pasahaton | **`pa-sahat-on`** | 6.0 | `sahat` |
|
| 536 |
+
| parbungkason | **`par-bungkas-on`** | 6.0 | `bungkas` |
|
| 537 |
+
| dipajomba | **`di-pa-jomba`** | 6.0 | `jomba` |
|
| 538 |
|
| 539 |
### 6.6 Linguistic Interpretation
|
| 540 |
|
| 541 |
> **Automated Insight:**
|
| 542 |
+
The language Batak Toba shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 543 |
|
| 544 |
---
|
| 545 |
## 7. Summary & Recommendations
|
|
|
|
| 766 |
---
|
| 767 |
*Generated by Wikilangs Models Pipeline*
|
| 768 |
|
| 769 |
+
*Report Date: 2026-01-03 18:37:11*
|
models/embeddings/aligned/bbc_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db941daa1a238eb429c0856609956fc5e3a6ddec6eeac89c07f912c914729ae9
|
| 3 |
+
size 1039397332
|
models/embeddings/aligned/bbc_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bbc", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/bbc_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:767629a9deca03ea25f9cdc4e8e1e25348498bc9de6ac0a2539f39f23fd9ac75
|
| 3 |
+
size 65664
|
models/embeddings/aligned/bbc_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bbc",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 2549,
|
| 7 |
+
"vocab_size": 14784
|
| 8 |
+
}
|
models/embeddings/aligned/bbc_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb8a25efba10b973f5be14a0219a05e94fa03854664bd39525994d2192f1d66b
|
| 3 |
+
size 260043220
|
models/embeddings/aligned/bbc_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bbc", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/bbc_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:076a48c590ed90d83b5eac50a58f04d6814dd38b06b1cec4dc1639589e7496b3
|
| 3 |
+
size 4224
|
models/embeddings/aligned/bbc_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bbc",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 2549,
|
| 7 |
+
"vocab_size": 14784
|
| 8 |
+
}
|
models/embeddings/aligned/bbc_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42625ddab9acd5cc385f903d92348185f8d85b955a1567ca788b464774779bf5
|
| 3 |
+
size 519827924
|
models/embeddings/aligned/bbc_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bbc", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/bbc_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88ec95d37b1b426e1b7c58a62e1f62de7ebb5819e6260b200fde5305df163f9c
|
| 3 |
+
size 16512
|
models/embeddings/aligned/bbc_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bbc",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 2549,
|
| 7 |
+
"vocab_size": 14784
|
| 8 |
+
}
|
models/embeddings/monolingual/bbc_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db941daa1a238eb429c0856609956fc5e3a6ddec6eeac89c07f912c914729ae9
|
| 3 |
+
size 1039397332
|
models/embeddings/monolingual/bbc_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 14784
|
| 15 |
}
|
models/embeddings/monolingual/bbc_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb8a25efba10b973f5be14a0219a05e94fa03854664bd39525994d2192f1d66b
|
| 3 |
+
size 260043220
|
models/embeddings/monolingual/bbc_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 14784
|
| 15 |
}
|
models/embeddings/monolingual/bbc_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42625ddab9acd5cc385f903d92348185f8d85b955a1567ca788b464774779bf5
|
| 3 |
+
size 519827924
|
models/embeddings/monolingual/bbc_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 14784
|
| 15 |
}
|
models/subword_markov/bbc_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89bc24e63801d026741c9770f27a242c3db3ea8fb9cb0d8ba39338f308114970
|
| 3 |
+
size 81519
|
models/subword_markov/bbc_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 1431,
|
| 6 |
+
"total_transitions": 5697823
|
| 7 |
}
|
models/subword_markov/bbc_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:138603c6263ca67f9e130c880be690e3756d1d9ecf6b93c354a434f14aa57618
|
| 3 |
+
size 351441
|
models/subword_markov/bbc_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 10144,
|
| 6 |
+
"total_transitions": 5696555
|
| 7 |
}
|
models/subword_markov/bbc_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94c482b526e4cb960e9393fae965fdf64fa79bbbf1e143460a24fd4aa483396b
|
| 3 |
+
size 1146284
|
models/subword_markov/bbc_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 40950,
|
| 6 |
+
"total_transitions": 5695287
|
| 7 |
}
|
models/subword_markov/bbc_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b039fd6d0aa4782f53e7290985fb2258f331baa62713443dd1054f64b5c3c8e3
|
| 3 |
+
size 2799128
|
models/subword_markov/bbc_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 129601,
|
| 6 |
+
"total_transitions": 5694019
|
| 7 |
}
|
models/subword_ngram/bbc_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b3a78edcc4e35abb2d7b965693bc05197f5c62414bb88673db4bf764173ecb0
|
| 3 |
+
size 45512
|
models/subword_ngram/bbc_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_ngrams": 3447,
|
| 6 |
+
"total_ngrams": 5697823
|
| 7 |
}
|
models/subword_ngram/bbc_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41ccbc1d8480359187b9d615f1be0b4c1262a3ea1bdcfca81011124a20f81767
|
| 3 |
+
size 235063
|
models/subword_ngram/bbc_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_ngrams": 18046,
|
| 6 |
+
"total_ngrams": 5696555
|
| 7 |
}
|
models/subword_ngram/bbc_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22ea50db1a30e410e829c4a9c7d0cb13fef3e47362ab69b8f634296acece7b2d
|
| 3 |
+
size 869502
|
models/subword_ngram/bbc_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_ngrams": 70061,
|
| 6 |
+
"total_ngrams": 5695287
|
| 7 |
}
|
models/subword_ngram/bbc_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:36b5cf7926926b024d64230a625b6b67cd8ab4c3b3746c91e61bb344deb68792
|
| 3 |
+
size 1830889
|
models/subword_ngram/bbc_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bbc",
|
| 5 |
+
"unique_ngrams": 153430,
|
| 6 |
+
"total_ngrams": 5694019
|
| 7 |
+
}
|
models/tokenizer/bbc_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1650a1c23f388853574d53a3d3fb000a00bb7bc4c39549ead619b3c2aee53ec
|
| 3 |
+
size 509631
|
models/tokenizer/bbc_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bbc_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c3cee0f0f305e0d69ab5b0d215b509e0fcdeb5b2a555f63c778099f19694127
|
| 3 |
+
size 802096
|
models/tokenizer/bbc_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bbc_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d498f661bf0788efe8069713f8df23c80442e16e51511ff106c171572555d999
|
| 3 |
+
size 370350
|
models/tokenizer/bbc_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/bbc_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75ec6538303ac9c5d834f88cd6177f23420e79bf1f874507e2c0181c6043df01
|
| 3 |
+
size 424926
|
models/vocabulary/bbc_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "bbc",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "bbc",
|
| 3 |
+
"vocabulary_size": 24923,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0506737344352153,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.5233598374653907,
|
| 9 |
+
"top_1000": 0.7647650478388052,
|
| 10 |
+
"top_5000": 0.8909128833346871,
|
| 11 |
+
"top_10000": 0.9324851609953039
|
| 12 |
},
|
| 13 |
+
"hapax_count": 25609,
|
| 14 |
+
"hapax_ratio": 0.506787778041637,
|
| 15 |
+
"total_documents": 1268
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/bbc_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87071f14275c8ab9dc4e10bd8a8cefd56ab9e6f5efbf03cd62f76cedc788e3b9
|
| 3 |
+
size 2170275
|
models/word_markov/bbc_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 50491,
|
| 6 |
+
"total_transitions": 995935
|
| 7 |
}
|
models/word_markov/bbc_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:394d7c0642f04e130f4d28719227a225dcac50c0850c3f41e78341d5113d0770
|
| 3 |
+
size 6561285
|
models/word_markov/bbc_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 324952,
|
| 6 |
+
"total_transitions": 994667
|
| 7 |
}
|
models/word_markov/bbc_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4bcf87aef1351b5c03923a2f80f78168cda522841f4beab737b95a27b137376
|
| 3 |
+
size 10814318
|
models/word_markov/bbc_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bbc",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bbc",
|
| 5 |
+
"unique_contexts": 656964,
|
| 6 |
+
"total_transitions": 993408
|
| 7 |
}
|