language: ba
language_name: BA
language_family: turkic_kipchak
tags:
- wikilangs
- nlp
- tokenizer
- embeddings
- n-gram
- markov
- wikipedia
- monolingual
- family-turkic_kipchak
license: mit
library_name: wikilangs
pipeline_tag: feature-extraction
datasets:
- omarkamali/wikipedia-monthly
dataset_info:
name: wikipedia-monthly
description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
- name: best_compression_ratio
type: compression
value: 4.068
- name: best_isotropy
type: isotropy
value: 0.7712
- name: vocabulary_size
type: vocab
value: 417410
generated: 2025-12-27T00:00:00.000Z
BA - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on BA Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
📋 Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4-gram)
- Markov chains (context of 1, 2, 3 and 4)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions
- Language Vocabulary
- Language Statistics

Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.248x | 3.21 | 0.2917% | 1,877,404 |
| 16k | 3.576x | 3.53 | 0.3212% | 1,705,077 |
| 32k | 3.852x | 3.81 | 0.3460% | 1,582,867 |
| 64k | 4.068x 🏆 | 4.02 | 0.3653% | 1,499,077 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Сыңрау торна: Сыңрау торна (йыр) — башҡорт халыҡ йыры. Сыңрау торна — өс актлы...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁с ың рау ▁тор на : ▁с ың рау ▁тор ... (+23 more) |
33 |
| 16k | ▁сың рау ▁торна : ▁сың рау ▁торна ▁( йыр ) ... (+17 more) |
27 |
| 32k | ▁сың рау ▁торна : ▁сың рау ▁торна ▁( йыр ) ... (+16 more) |
26 |
| 64k | ▁сың рау ▁торна : ▁сың рау ▁торна ▁( йыр ) ... (+16 more) |
26 |
Sample 2: Бөйөк БританияБөйөк Британия
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁бөйөк ▁британия бөйөк ▁британия |
4 |
| 16k | ▁бөйөк ▁британия бөйөк ▁британия |
4 |
| 32k | ▁бөйөк ▁британия бөйөк ▁британия |
4 |
| 64k | ▁бөйөк ▁британия бөйөк ▁британия |
4 |
Sample 3: Австралия — Көньяҡ ярымшарҙарҙа урынлашҡан дәүләт. Австралия (ҡитға) — Көнсығыш...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | ▁австр алия ▁— ▁көньяҡ ▁ярым шар ҙарҙа ▁урынлашҡан ▁дәүләт . ... (+18 more) |
28 |
| 16k | ▁австралия ▁— ▁көньяҡ ▁ярым шар ҙарҙа ▁урынлашҡан ▁дәүләт . ▁австралия ... (+15 more) |
25 |
| 32k | ▁австралия ▁— ▁көньяҡ ▁ярымшар ҙарҙа ▁урынлашҡан ▁дәүләт . ▁австралия ▁( ... (+12 more) |
22 |
| 64k | ▁австралия ▁— ▁көньяҡ ▁ярымшар ҙарҙа ▁урынлашҡан ▁дәүләт . ▁австралия ▁( ... (+11 more) |
21 |
Key Findings
- Best Compression: 64k achieves 4.068x compression
- Lowest UNK Rate: 8k with 0.2917% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|
| 2-gram | 46,308 🏆 | 15.50 | 552,281 | 13.1% | 33.2% |
| 2-gram | 586 🏆 | 9.20 | 17,419 | 48.7% | 94.9% |
| 3-gram | 107,842 | 16.72 | 1,025,675 | 10.6% | 27.4% |
| 3-gram | 5,171 | 12.34 | 163,683 | 17.5% | 55.2% |
| 4-gram | 184,106 | 17.49 | 1,793,503 | 10.9% | 25.9% |
| 4-gram | 26,442 | 14.69 | 914,560 | 9.8% | 31.4% |
Top 5 N-grams by Size
2-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | категория : |
197,952 |
| 2 | . — |
100,523 |
| 3 | ) . |
79,614 |
| 4 | ) — |
77,384 |
| 5 | ) , |
71,872 |
3-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | % d0 % |
38,175 |
| 2 | йылға бассейны — |
29,475 |
| 3 | . а . |
21,364 |
| 4 | йылғалары категория : |
20,772 |
| 5 | һыу реестры мәғлүмәттәре |
20,323 |
4-grams:
| Rank | N-gram | Count |
|---|---|---|
| 1 | рәсәй дәүләт һыу реестры |
20,195 |
| 2 | мәғлүмәттәре рәсәй дәүләт һыу |
20,169 |
| 3 | реестры мәғлүмәттәре рәсәй дәүләт |
20,169 |
| 4 | һыу реестры мәғлүмәттәре рәсәй |
20,166 |
| 5 | дәүләт һыу реестрында һыу |
20,160 |
Key Findings
- Best Perplexity: 2-gram with 586
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~31% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|
| 1 | 0.7118 | 1.638 | 7.12 | 1,081,802 | 28.8% |
| 1 | 1.2737 | 2.418 | 9.88 | 4,928 | 0.0% |
| 2 | 0.3181 | 1.247 | 2.06 | 7,695,897 | 68.2% |
| 2 | 0.9811 | 1.974 | 7.09 | 48,690 | 1.9% |
| 3 | 0.1344 | 1.098 | 1.31 | 15,852,609 | 86.6% |
| 3 | 0.8666 | 1.823 | 4.73 | 344,963 | 13.3% |
| 4 | 0.0616 🏆 | 1.044 | 1.12 | 20,837,559 | 93.8% |
| 4 | 0.6873 🏆 | 1.610 | 3.25 | 1,631,641 | 31.3% |
Generated Text Samples
Below are text samples generated from each Markov chain model:
Context Size 1:
. а . һыу бассейны ) . — шул таштар ҡыҙһа , 1998 ) — 0, суданды иҫәпләмәйенсә ) , 1978 йылда 768 ( номеры ) 9 октябрь 1918 йылдан административ— 28 тайфун ) , табак магнаты , 2006 ) — 13 ғинуарында бәләкәй йылға двина
Context Size 2:
категория : ҡабарҙы - балҡар йылғалары категория : алфавит буйынса шәхестәр категория : рәсәй субъек.... — мәскәү 762 « сапсан » санкт - петербург собор майҙаны ансамбле , солист сифатында саҡыралар) . памятный знак на месте ќ , яңғырау диапозоны киң ( 30 сентябрь 1960 йыл ,
Context Size 3:
% d0 % b5 % d1 % 83 % d0 % b0 % d1 % 86 % d1йылға бассейны — печора һәм обь йылғалары араһындағы , баренц диңгеҙенә ҡойоусы , йылғалар бассейны .... а . токарев тәҡдим итәләр . немецтарҙы аптыратып , сталин документтар өсөн түләргә ризалаша . әзер...
Context Size 4:
рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға үрге обь һыу бассейны округында урынлашҡан , һыу ху...реестры мәғлүмәттәре рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға үрге обь һыу бассейны округынд...мәғлүмәттәре рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға түбәнге волга һыу бассейны округында у...
Key Findings
- Best Predictability: Context-4 with 93.8% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,631,641 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 417,410 |
| Total Tokens | 23,479,822 |
| Mean Frequency | 56.25 |
| Median Frequency | 4 |
| Frequency Std Dev | 1249.29 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | һәм | 442,975 |
| 2 | буйынса | 199,955 |
| 3 | категория | 198,342 |
| 4 | һыу | 168,429 |
| 5 | менән | 154,744 |
| 6 | йылға | 141,138 |
| 7 | йылда | 136,378 |
| 8 | рәсәй | 111,896 |
| 9 | йыл | 97,392 |
| 10 | йылдың | 89,845 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | совкомбанк | 2 |
| 2 | маркетплейстың | 2 |
| 3 | суларға | 2 |
| 4 | кишлак | 2 |
| 5 | пацанский | 2 |
| 6 | мунден | 2 |
| 7 | гертфордшир | 2 |
| 8 | кроуға | 2 |
| 9 | франклоу | 2 |
| 10 | алтынкүлдән | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0644 |
| R² (Goodness of Fit) | 0.989157 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 23.2% |
| Top 1,000 | 52.0% |
| Top 5,000 | 71.9% |
| Top 10,000 | 78.9% |
Key Findings
- Zipf Compliance: R²=0.9892 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 23.2% of corpus
- Long Tail: 407,410 words needed for remaining 21.1% coverage
5. Word Embeddings Evaluation
Model Comparison
| Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
|---|---|---|---|---|---|
| mono_32d | 246,880 | 32 | 3.693 | 1.255 | 0.7645 |
| mono_64d | 246,880 | 64 | 4.152 | 1.202 | 0.7712 🏆 |
| mono_128d | 246,880 | 128 | 4.739 | 1.156 | 0.7517 |
| embeddings_enhanced | 0 | 0 | 0.000 | 0.000 | 0.0000 |
Key Findings
- Best Isotropy: mono_64d with 0.7712 (more uniform distribution)
- Dimension Trade-off: Higher dimensions capture more semantics but reduce isotropy
- Vocabulary Coverage: All models cover 246,880 words
- Recommendation: 100d for balanced semantic capture and efficiency
6. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 32k BPE | Best compression (4.07x) with low UNK rate |
| N-gram | 5-gram | Lowest perplexity (586) |
| Markov | Context-4 | Highest predictability (93.8%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
R² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- 🌐 Website: wikilangs.org
- 🤗 Models: huggingface.co/wikilangs
- 📊 Data: wikipedia-monthly
- 👤 Author: Omar Kamali
Generated by Wikilangs Models Pipeline
Report Date: 2025-12-27 23:45:09











