omarkamali commited on
Commit
6d2b184
·
verified ·
1 Parent(s): 09aa229

Upload all models and assets for an (20251001)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +310 -135
  2. models/embeddings/monolingual/an_128d.bin +2 -2
  3. models/embeddings/monolingual/an_128d_metadata.json +5 -3
  4. models/embeddings/monolingual/an_32d.bin +2 -2
  5. models/embeddings/monolingual/an_32d_metadata.json +5 -3
  6. models/embeddings/monolingual/an_64d.bin +2 -2
  7. models/embeddings/monolingual/an_64d_metadata.json +5 -3
  8. models/subword_markov/an_markov_ctx1_subword.parquet +2 -2
  9. models/subword_markov/an_markov_ctx1_subword_metadata.json +2 -2
  10. models/subword_markov/an_markov_ctx2_subword.parquet +2 -2
  11. models/subword_markov/an_markov_ctx2_subword_metadata.json +2 -2
  12. models/subword_markov/an_markov_ctx3_subword.parquet +2 -2
  13. models/subword_markov/an_markov_ctx3_subword_metadata.json +2 -2
  14. models/subword_markov/an_markov_ctx4_subword.parquet +2 -2
  15. models/subword_markov/an_markov_ctx4_subword_metadata.json +2 -2
  16. models/subword_ngram/an_2gram_subword.parquet +2 -2
  17. models/subword_ngram/an_2gram_subword_metadata.json +2 -2
  18. models/subword_ngram/an_3gram_subword.parquet +2 -2
  19. models/subword_ngram/an_3gram_subword_metadata.json +2 -2
  20. models/subword_ngram/an_4gram_subword.parquet +2 -2
  21. models/subword_ngram/an_4gram_subword_metadata.json +2 -2
  22. models/tokenizer/an_tokenizer_16k.model +2 -2
  23. models/tokenizer/an_tokenizer_16k.vocab +0 -0
  24. models/tokenizer/an_tokenizer_32k.model +2 -2
  25. models/tokenizer/an_tokenizer_32k.vocab +0 -0
  26. models/tokenizer/an_tokenizer_64k.model +2 -2
  27. models/tokenizer/an_tokenizer_64k.vocab +0 -0
  28. models/tokenizer/an_tokenizer_8k.model +2 -2
  29. models/tokenizer/an_tokenizer_8k.vocab +0 -0
  30. models/vocabulary/an_vocabulary.parquet +2 -2
  31. models/vocabulary/an_vocabulary_metadata.json +10 -9
  32. models/word_markov/an_markov_ctx1_word.parquet +2 -2
  33. models/word_markov/an_markov_ctx1_word_metadata.json +2 -2
  34. models/word_markov/an_markov_ctx2_word.parquet +2 -2
  35. models/word_markov/an_markov_ctx2_word_metadata.json +2 -2
  36. models/word_markov/an_markov_ctx3_word.parquet +2 -2
  37. models/word_markov/an_markov_ctx3_word_metadata.json +2 -2
  38. models/word_markov/an_markov_ctx4_word.parquet +2 -2
  39. models/word_markov/an_markov_ctx4_word_metadata.json +2 -2
  40. models/word_ngram/an_2gram_word.parquet +2 -2
  41. models/word_ngram/an_2gram_word_metadata.json +2 -2
  42. models/word_ngram/an_3gram_word.parquet +2 -2
  43. models/word_ngram/an_3gram_word_metadata.json +2 -2
  44. models/word_ngram/an_4gram_word.parquet +2 -2
  45. models/word_ngram/an_4gram_word_metadata.json +2 -2
  46. visualizations/embedding_isotropy.png +0 -0
  47. visualizations/embedding_norms.png +0 -0
  48. visualizations/embedding_similarity.png +2 -2
  49. visualizations/markov_branching.png +0 -0
  50. visualizations/markov_contexts.png +0 -0
README.md CHANGED
@@ -23,14 +23,14 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 3.796
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.8139
30
  - name: vocabulary_size
31
  type: vocab
32
- value: 217616
33
- generated: 2025-12-27
34
  ---
35
 
36
  # AN - Wikilangs Models
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
- - N-gram models (2, 3, 4-gram)
48
- - Markov chains (context of 1, 2, 3 and 4)
49
  - Subword N-gram and Markov chains
50
- - Embeddings in various sizes and dimensions
51
  - Language Vocabulary
52
  - Language Statistics
 
53
  ![Performance Dashboard](visualizations/performance_dashboard.png)
54
 
55
  ### Analysis and Evaluation
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
59
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
60
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
61
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
62
- - [6. Summary & Recommendations](#6-summary--recommendations)
 
63
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
64
  - [Visualizations Index](#visualizations-index)
65
 
@@ -68,53 +70,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
68
 
69
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
70
 
 
 
 
 
 
 
71
  ### Results
72
 
73
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
74
  |------------|-------------|---------------|----------|--------------|
75
- | **8k** | 3.240x | 3.20 | 0.1217% | 1,479,330 |
76
- | **16k** | 3.471x | 3.43 | 0.1304% | 1,380,762 |
77
- | **32k** | 3.657x | 3.61 | 0.1374% | 1,310,812 |
78
- | **64k** | 3.796x 🏆 | 3.75 | 0.1426% | 1,262,658 |
79
 
80
  ### Tokenization Examples
81
 
82
  Below are sample sentences tokenized with each vocabulary size:
83
 
84
- **Sample 1:** `Schnaitsee (en bavaro Schnoatsee) ye un municipio d'o districto de Traunstein en...`
85
 
86
  | Vocab | Tokens | Count |
87
  |-------|--------|-------|
88
- | 8k | `▁sch na it see( enbavarosch no at ... (+25 more)` | 35 |
89
- | 16k | `▁sch na it see( enbavarosch no at ... (+25 more)` | 35 |
90
- | 32k | `▁sch na it see( enbavarosch no at ... (+25 more)` | 35 |
91
- | 64k | `▁sch na it see( enbavarosch no at ... (+25 more)` | 35 |
92
 
93
- **Sample 2:** `Chesa puet estar:
94
- Chesa terreno con muito cheso u chacimiento de cheso.
95
- Chesa, m...`
96
 
97
  | Vocab | Tokens | Count |
98
  |-------|--------|-------|
99
- | 8k | `▁ch esa puet ▁estar :ch esaterrenocon ▁muito ... (+23 more)` | 33 |
100
- | 16k | `▁ch esa puet ▁estar : ch esaterrenocon ▁muito ... (+21 more)` | 31 |
101
- | 32k | `▁chesapuetestar :chesaterreno ▁con ▁muito ▁cheso ▁u ... (+18 more)` | 28 |
102
- | 64k | `▁chesapuetestar :chesaterreno ▁con ▁muito ▁cheso ▁u ... (+18 more)` | 28 |
103
 
104
- **Sample 3:** `L'ibón de ra Sartén ye un ibón situau chunto o garmo de ra Mina (2.581 m) en l'A...`
105
 
106
  | Vocab | Tokens | Count |
107
  |-------|--------|-------|
108
- | 8k | `▁l ' ibónderasar t én ▁yeun ... (+41 more)` | 51 |
109
- | 16k | `▁l ' ibónderasar t én ▁yeun ... (+33 more)` | 43 |
110
- | 32k | `▁l ' ibónderasar t ényeun ... (+33 more)` | 43 |
111
- | 64k | `▁l ' ibónderasar tén ▁yeunibón ... (+31 more)` | 41 |
112
 
113
 
114
  ### Key Findings
115
 
116
- - **Best Compression:** 64k achieves 3.796x compression
117
- - **Lowest UNK Rate:** 8k with 0.1217% unknown tokens
118
  - **Trade-off:** Larger vocabularies improve compression but increase model size
119
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
120
 
@@ -123,57 +129,89 @@ Chesa, m...`
123
 
124
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
125
 
 
 
126
  ![N-gram Coverage](visualizations/ngram_coverage.png)
127
 
128
  ### Results
129
 
130
- | N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
131
- |--------|------------|---------|----------------|------------------|-------------------|
132
- | **2-gram** | 18,567 🏆 | 14.18 | 299,504 | 21.6% | 42.2% |
133
- | **2-gram** | 321 🏆 | 8.33 | 8,390 | 62.9% | 98.8% |
134
- | **3-gram** | 65,327 | 16.00 | 654,301 | 13.6% | 29.7% |
135
- | **3-gram** | 2,716 | 11.41 | 70,003 | 23.4% | 68.9% |
136
- | **4-gram** | 178,250 | 17.44 | 1,306,932 | 8.6% | 21.3% |
137
- | **4-gram** | 14,930 | 13.87 | 389,532 | 12.2% | 38.1% |
138
 
139
  ### Top 5 N-grams by Size
140
 
141
- **2-grams:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  | Rank | N-gram | Count |
144
  |------|--------|-------|
145
- | 1 | `d '` | 513,061 |
146
- | 2 | `| |` | 216,222 |
147
- | 3 | `categoría :` | 138,788 |
148
- | 4 | `' a` | 107,710 |
149
- | 5 | `' o` | 106,730 |
150
 
151
- **3-grams:**
152
 
153
  | Rank | N-gram | Count |
154
  |------|--------|-------|
155
- | 1 | `d ' a` | 107,463 |
156
- | 2 | `d ' o` | 106,609 |
157
- | 3 | `| | |` | 81,137 |
158
- | 4 | `categoría : cintas` | 47,877 |
159
- | 5 | `| - |` | 47,248 |
160
 
161
- **4-grams:**
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
- | 1 | `| | | |` | 40,524 |
166
- | 2 | `- | | |` | 39,996 |
167
- | 3 | `| | socorro |` | 25,824 |
168
- | 4 | `| linear | -` | 25,824 |
169
- | 5 | `| socorro | |` | 25,824 |
170
 
171
 
172
  ### Key Findings
173
 
174
- - **Best Perplexity:** 2-gram with 321
175
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
176
- - **Coverage:** Top-1000 patterns cover ~38% of corpus
177
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
178
 
179
  ---
@@ -181,55 +219,86 @@ Chesa, m...`
181
 
182
  ![Markov Entropy](visualizations/markov_entropy.png)
183
 
 
 
184
  ![Markov Branching](visualizations/markov_branching.png)
185
 
186
  ### Results
187
 
188
- | Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
189
- |---------|-------------|------------|------------------|-----------------|----------------|
190
- | **1** | 0.6636 | 1.584 | 5.61 | 525,914 | 33.6% |
191
- | **1** | 1.0327 | 2.046 | 7.36 | 3,250 | 0.0% |
192
- | **2** | 0.3652 | 1.288 | 2.21 | 2,944,964 | 63.5% |
193
- | **2** | 0.8991 | 1.865 | 6.02 | 23,920 | 10.1% |
194
- | **3** | 0.1730 | 1.127 | 1.41 | 6,515,045 | 82.7% |
195
- | **3** | 0.8416 | 1.792 | 4.55 | 143,854 | 15.8% |
196
- | **4** | 0.0911 🏆 | 1.065 | 1.19 | 9,175,931 | 90.9% |
197
- | **4** | 0.7384 🏆 | 1.668 | 3.44 | 654,131 | 26.2% |
 
 
 
 
198
 
199
- ### Generated Text Samples
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
- Below are text samples generated from each Markov chain model:
 
 
 
 
 
 
 
202
 
203
  **Context Size 1:**
204
 
205
- 1. `, pedanía . por aon serviban pa permitir que garra problema d ' arquitectura . bibliografía`
206
- 2. `de febrero , ugariticas y legendarios del xúcar que lo país exerce como l ' octubre`
207
- 3. `. isbn 978 - | 30 de roses en a estudiants mes recientment plegada d '`
208
 
209
  **Context Size 2:**
210
 
211
- 1. `d ' aventuras dramaticas de 1992 22px | border espanya 22px francia 263 . je serai allée`
212
- 2. `| | | | 13 d ' el plantío como equipo local dica l ' ataque .`
213
- 3. `categoría : cintas interpretadas por joe baker categoría : cintas interpretadas por mort engelberg c...`
214
 
215
  **Context Size 3:**
216
 
217
- 1. `d ' a empresa atac . redolada villa lazzaroni via appia nuova , circa d ' a mar`
218
- 2. `d ' o fisico y incheniero estausunidense karl jansky ( † 1950 ) . - naixencia en hamburgo`
219
- 3. `| | | | 12 de setiembre , 1998 loneos 52773 - 17 d ' octubre , 1977`
220
 
221
  **Context Size 4:**
222
 
223
- 1. `| | | | 5 de chulio , 2000 loneos 33965 - 10 de chulio , 2000 linear 61258`
224
- 2. `- | | | | 2 de febrero , 2000 linear 50315 - 2 de febrero , 2000 linear`
225
- 3. `| | socorro | | linear | - | 87422 - | | | | 16 de setiembre ,`
226
 
227
 
228
  ### Key Findings
229
 
230
- - **Best Predictability:** Context-4 with 90.9% predictability
231
  - **Branching Factor:** Decreases with context size (more deterministic)
232
- - **Memory Trade-off:** Larger contexts require more storage (654,131 contexts)
233
  - **Recommendation:** Context-3 or Context-4 for text generation
234
 
235
  ---
@@ -245,64 +314,64 @@ Below are text samples generated from each Markov chain model:
245
 
246
  | Metric | Value |
247
  |--------|-------|
248
- | Vocabulary Size | 217,616 |
249
- | Total Tokens | 13,131,016 |
250
- | Mean Frequency | 60.34 |
251
  | Median Frequency | 4 |
252
- | Frequency Std Dev | 2696.90 |
253
 
254
  ### Most Common Words
255
 
256
  | Rank | Word | Frequency |
257
  |------|------|-----------|
258
- | 1 | de | 776,198 |
259
- | 2 | d | 517,135 |
260
- | 3 | a | 444,267 |
261
- | 4 | en | 414,383 |
262
- | 5 | o | 303,229 |
263
- | 6 | y | 249,159 |
264
- | 7 | categoría | 139,745 |
265
- | 8 | que | 128,308 |
266
- | 9 | l | 111,482 |
267
- | 10 | ye | 109,905 |
268
 
269
  ### Least Common Words (from vocabulary)
270
 
271
  | Rank | Word | Frequency |
272
  |------|------|-----------|
273
- | 1 | rochut | 2 |
274
- | 2 | méchaly | 2 |
275
- | 3 | wiedemann | 2 |
276
- | 4 | limotte | 2 |
277
- | 5 | wlodkowski | 2 |
278
- | 6 | taos | 2 |
279
- | 7 | slovis | 2 |
280
- | 8 | samaha | 2 |
281
- | 9 | seros | 2 |
282
- | 10 | cookeville | 2 |
283
 
284
  ### Zipf's Law Analysis
285
 
286
  | Metric | Value |
287
  |--------|-------|
288
- | Zipf Coefficient | 1.0856 |
289
- | R² (Goodness of Fit) | 0.997842 |
290
  | Adherence Quality | **excellent** |
291
 
292
  ### Coverage Analysis
293
 
294
  | Top N Words | Coverage |
295
  |-------------|----------|
296
- | Top 100 | 43.1% |
297
- | Top 1,000 | 66.3% |
298
- | Top 5,000 | 80.4% |
299
- | Top 10,000 | 85.6% |
300
 
301
  ### Key Findings
302
 
303
- - **Zipf Compliance:** R²=0.9978 indicates excellent adherence to Zipf's law
304
- - **High Frequency Dominance:** Top 100 words cover 43.1% of corpus
305
- - **Long Tail:** 207,616 words needed for remaining 14.4% coverage
306
 
307
  ---
308
  ## 5. Word Embeddings Evaluation
@@ -315,24 +384,127 @@ Below are text samples generated from each Markov chain model:
315
 
316
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
317
 
318
- ### Model Comparison
319
 
320
- | Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
321
- |-------|------------|-----------|----------|----------|----------|
322
- | **mono_32d** | 130,625 | 32 | 3.989 | 1.163 | 0.8139 🏆 |
323
- | **mono_64d** | 130,625 | 64 | 4.561 | 1.144 | 0.8131 |
324
- | **mono_128d** | 130,625 | 128 | 5.245 | 1.094 | 0.8002 |
325
- | **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
 
 
 
 
 
 
326
 
327
  ### Key Findings
328
 
329
- - **Best Isotropy:** mono_32d with 0.8139 (more uniform distribution)
330
- - **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
331
- - **Vocabulary Coverage:** All models cover 130,625 words
332
- - **Recommendation:** 100d for balanced semantic capture and efficiency
333
 
334
  ---
335
- ## 6. Summary & Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336
 
337
  ![Performance Dashboard](visualizations/performance_dashboard.png)
338
 
@@ -340,11 +512,12 @@ Below are text samples generated from each Markov chain model:
340
 
341
  | Component | Recommended | Rationale |
342
  |-----------|-------------|-----------|
343
- | Tokenizer | **32k BPE** | Best compression (3.80x) with low UNK rate |
344
- | N-gram | **5-gram** | Lowest perplexity (321) |
345
- | Markov | **Context-4** | Highest predictability (90.9%) |
346
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
347
 
 
348
  ---
349
  ## Appendix: Metrics Glossary & Interpretation Guide
350
 
@@ -534,7 +707,8 @@ If you use these models in your research, please cite:
534
  author = {Kamali, Omar},
535
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
536
  year = {2025},
537
- publisher = {HuggingFace},
 
538
  url = {https://huggingface.co/wikilangs}
539
  institution = {Omneity Labs}
540
  }
@@ -550,7 +724,8 @@ MIT License - Free for academic and commercial use.
550
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
551
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
552
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
 
553
  ---
554
  *Generated by Wikilangs Models Pipeline*
555
 
556
- *Report Date: 2025-12-27 06:02:07*
 
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
+ value: 4.267
27
  - name: best_isotropy
28
  type: isotropy
29
+ value: 0.8193
30
  - name: vocabulary_size
31
  type: vocab
32
+ value: 0
33
+ generated: 2026-01-03
34
  ---
35
 
36
  # AN - Wikilangs Models
 
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
+ - N-gram models (2, 3, 4, 5-gram)
48
+ - Markov chains (context of 1, 2, 3, 4 and 5)
49
  - Subword N-gram and Markov chains
50
+ - Embeddings in various sizes and dimensions (aligned and unaligned)
51
  - Language Vocabulary
52
  - Language Statistics
53
+
54
  ![Performance Dashboard](visualizations/performance_dashboard.png)
55
 
56
  ### Analysis and Evaluation
 
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
+ - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
+ - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
67
 
 
70
 
71
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
72
 
73
+ ![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
74
+
75
+ ![Tokenizer OOV](visualizations/tokenizer_oov.png)
76
+
77
+ ![Total Tokens](visualizations/tokenizer_total_tokens.png)
78
+
79
  ### Results
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
+ | **8k** | 3.551x | 3.55 | 0.1259% | 1,215,405 |
84
+ | **16k** | 3.845x | 3.85 | 0.1363% | 1,122,403 |
85
+ | **32k** | 4.084x | 4.08 | 0.1448% | 1,056,930 |
86
+ | **64k** | 4.267x 🏆 | 4.27 | 0.1513% | 1,011,533 |
87
 
88
  ### Tokenization Examples
89
 
90
  Below are sample sentences tokenized with each vocabulary size:
91
 
92
+ **Sample 1:** `Anyos: - - Decenios: Anyos - Anyos - Anyos Sieglos: Sieglo X - Sieglo XI - Siegl...`
93
 
94
  | Vocab | Tokens | Count |
95
  |-------|--------|-------|
96
+ | 8k | `▁anyos : ▁- ▁-decenios :anyos ▁- anyos ▁- ... (+15 more)` | 25 |
97
+ | 16k | `▁anyos : ▁- ▁-decenios :anyos ▁- anyos ▁- ... (+15 more)` | 25 |
98
+ | 32k | `▁anyos : ▁- ▁-decenios :anyos ▁- anyos ▁- ... (+15 more)` | 25 |
99
+ | 64k | `▁anyos : ▁- ▁-decenios :anyos ▁- anyos ▁- ... (+15 more)` | 25 |
100
 
101
+ **Sample 2:** `Lo Buçon (en francés Aubusson) ye una localidat y comuna francesa situada en o d...`
 
 
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
+ | 8k | `▁lobu ç on( enfrancésa ub us ... (+28 more)` | 38 |
106
+ | 16k | `▁lobu çon( enfrancésa ub us son ... (+25 more)` | 35 |
107
+ | 32k | `▁lobu çon ( enfrancésaub us son ) ... (+24 more)` | 34 |
108
+ | 64k | `▁lobu çon ( enfrancésaub us son ) ... (+22 more)` | 32 |
109
 
110
+ **Sample 3:** `Holzmann ye un lugar d'o municipio de Chieming en o sud-este de Bavera, Alemanya...`
111
 
112
  | Vocab | Tokens | Count |
113
  |-------|--------|-------|
114
+ | 8k | `▁hol z mannyeunlugar ▁d ' omunicipio ... (+28 more)` | 38 |
115
+ | 16k | `▁hol z mannyeunlugar ▁d ' omunicipio ... (+28 more)` | 38 |
116
+ | 32k | `▁holz mann ▁yeunlugard ' omunicipiode ... (+26 more)` | 36 |
117
+ | 64k | `▁holz mann ▁yeunlugard ' omunicipiode ... (+26 more)` | 36 |
118
 
119
 
120
  ### Key Findings
121
 
122
+ - **Best Compression:** 64k achieves 4.267x compression
123
+ - **Lowest UNK Rate:** 8k with 0.1259% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
126
 
 
129
 
130
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
131
 
132
+ ![N-gram Unique](visualizations/ngram_unique.png)
133
+
134
  ![N-gram Coverage](visualizations/ngram_coverage.png)
135
 
136
  ### Results
137
 
138
+ | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
+ |--------|---------|------------|---------|----------------|------------------|-------------------|
140
+ | **2-gram** | Word | 25,531 | 14.64 | 231,538 | 16.8% | 37.4% |
141
+ | **2-gram** | Subword | 258 🏆 | 8.01 | 7,000 | 68.7% | 99.3% |
142
+ | **3-gram** | Word | 86,752 | 16.40 | 456,958 | 8.4% | 23.0% |
143
+ | **3-gram** | Subword | 2,153 | 11.07 | 52,839 | 25.8% | 73.4% |
144
+ | **4-gram** | Word | 208,198 | 17.67 | 890,645 | 6.8% | 17.2% |
145
+ | **4-gram** | Subword | 12,189 | 13.57 | 289,840 | 12.6% | 39.7% |
146
 
147
  ### Top 5 N-grams by Size
148
 
149
+ **2-grams (Word):**
150
+
151
+ | Rank | N-gram | Count |
152
+ |------|--------|-------|
153
+ | 1 | `d a` | 106,922 |
154
+ | 2 | `d o` | 105,903 |
155
+ | 3 | `en a` | 60,539 |
156
+ | 4 | `en o` | 45,891 |
157
+ | 5 | `de l` | 37,271 |
158
+
159
+ **3-grams (Word):**
160
+
161
+ | Rank | N-gram | Count |
162
+ |------|--------|-------|
163
+ | 1 | `a provincia de` | 17,407 |
164
+ | 2 | `d a provincia` | 13,389 |
165
+ | 3 | `una superficie de` | 12,709 |
166
+ | 4 | `suya población ye` | 12,409 |
167
+ | 5 | `población ye de` | 12,354 |
168
+
169
+ **4-grams (Word):**
170
+
171
+ | Rank | N-gram | Count |
172
+ |------|--------|-------|
173
+ | 1 | `suya población ye de` | 12,288 |
174
+ | 2 | `en una superficie de` | 12,121 |
175
+ | 3 | `d a provincia de` | 12,081 |
176
+ | 4 | `habitants en una superficie` | 11,267 |
177
+ | 5 | `a suya población ye` | 11,250 |
178
+
179
+ **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
+ | 1 | `a _` | 1,856,533 |
184
+ | 2 | `_ d` | 1,594,808 |
185
+ | 3 | `e _` | 1,531,455 |
186
+ | 4 | `s _` | 1,293,859 |
187
+ | 5 | `n _` | 1,201,430 |
188
 
189
+ **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
+ | 1 | `_ d e` | 886,389 |
194
+ | 2 | `d e _` | 768,800 |
195
+ | 3 | `_ d '` | 488,988 |
196
+ | 4 | `e n _` | 472,591 |
197
+ | 5 | `_ e n` | 449,047 |
198
 
199
+ **4-grams (Subword):**
200
 
201
  | Rank | N-gram | Count |
202
  |------|--------|-------|
203
+ | 1 | `_ d e _` | 734,534 |
204
+ | 2 | `_ e n _` | 392,856 |
205
+ | 3 | `_ d ' a` | 233,826 |
206
+ | 4 | `a _ d e` | 183,991 |
207
+ | 5 | `_ c o n` | 176,849 |
208
 
209
 
210
  ### Key Findings
211
 
212
+ - **Best Perplexity:** 2-gram (subword) with 258
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
+ - **Coverage:** Top-1000 patterns cover ~40% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
 
219
 
220
  ![Markov Entropy](visualizations/markov_entropy.png)
221
 
222
+ ![Markov Contexts](visualizations/markov_contexts.png)
223
+
224
  ![Markov Branching](visualizations/markov_branching.png)
225
 
226
  ### Results
227
 
228
+ | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
+ |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
+ | **1** | Word | 0.9747 | 1.965 | 7.58 | 367,064 | 2.5% |
231
+ | **1** | Subword | 0.7827 | 1.720 | 5.89 | 3,499 | 21.7% |
232
+ | **2** | Word | 0.3412 | 1.267 | 2.01 | 2,775,765 | 65.9% |
233
+ | **2** | Subword | 0.8316 | 1.780 | 5.33 | 20,583 | 16.8% |
234
+ | **3** | Word | 0.1546 | 1.113 | 1.33 | 5,573,548 | 84.5% |
235
+ | **3** | Subword | 0.7758 | 1.712 | 4.33 | 109,746 | 22.4% |
236
+ | **4** | Word | 0.0738 🏆 | 1.052 | 1.14 | 7,417,165 | 92.6% |
237
+ | **4** | Subword | 0.7143 | 1.641 | 3.37 | 474,426 | 28.6% |
238
+
239
+ ### Generated Text Samples (Word-based)
240
+
241
+ Below are text samples generated from each word-based Markov chain model:
242
 
243
+ **Context Size 1:**
244
+
245
+ 1. `de barcelona cuan obtiene un municipio espanyol o suyo segundo punto alchido d o brien moore`
246
+ 2. `d a z vs üü alto penedés información de chunio de argañán a camera a population`
247
+ 3. `a risilleta a suya identidat y bi ha una economía como dancing in europe bbc d`
248
+
249
+ **Context Size 2:**
250
+
251
+ 1. `d a provincia de barcelona iste matrimonio naixoron 2 fillas a on a hansa montó as suyas`
252
+ 2. `d o far west anexionando muitos territorios que componeban a corona d aragón que explicitament denom...`
253
+ 3. `en a suya población ye de 643 habitants en una superficie de 16 01 491 teruel torralba`
254
+
255
+ **Context Size 3:**
256
+
257
+ 1. `a provincia de uesca d as penyas de riglos solano n 42 27 29 21 e 0 27`
258
+ 2. `d a provincia de zaragoza en la suya part d o conchunto d o sud con a huerta`
259
+ 3. `una superficie de 88 4 km y una densidat de población de 10 44 hab km cifras oficiales`
260
+
261
+ **Context Size 4:**
262
 
263
+ 1. `suya población ye de en una superficie de 20 1 km y una densidat de población de 5 24`
264
+ 2. `en una superficie de 82 09 km con una densidat d hab km cheografía a localidat de gonnosnò ye`
265
+ 3. `d a provincia de chirona y partiu chudicial de teruel catálogo de pueblos y municipios de aragón est...`
266
+
267
+
268
+ ### Generated Text Samples (Subword-based)
269
+
270
+ Below are text samples generated from each subword-based Markov chain model:
271
 
272
  **Context Size 1:**
273
 
274
+ 1. `_ptonena_le_a_ev`
275
+ 2. `atarro_d'a_erra.`
276
+ 3. `e_ula_coril._qus`
277
 
278
  **Context Size 2:**
279
 
280
+ 1. `a_forangacia_ingà`
281
+ 2. `_de_le_d'isten_co`
282
+ 3. `e_ye_suff_una_fes`
283
 
284
  **Context Size 3:**
285
 
286
+ 1. `_de_barrisor_intas`
287
+ 2. `de_a_prencias)._th`
288
+ 3. `_d'a_latín_a_lo_si`
289
 
290
  **Context Size 4:**
291
 
292
+ 1. `_de_l'animent_y_pol`
293
+ 2. `_en_tiembre_de_davi`
294
+ 3. `_d'a_por_o_nuesta_y`
295
 
296
 
297
  ### Key Findings
298
 
299
+ - **Best Predictability:** Context-4 (word) with 92.6% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
+ - **Memory Trade-off:** Larger contexts require more storage (474,426 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
 
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
+ | Vocabulary Size | 182,961 |
318
+ | Total Tokens | 11,551,476 |
319
+ | Mean Frequency | 63.14 |
320
  | Median Frequency | 4 |
321
+ | Frequency Std Dev | 2812.87 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
+ | 1 | de | 738,428 |
328
+ | 2 | d | 494,628 |
329
+ | 3 | a | 437,762 |
330
+ | 4 | en | 406,259 |
331
+ | 5 | o | 301,745 |
332
+ | 6 | y | 244,743 |
333
+ | 7 | que | 126,444 |
334
+ | 8 | l | 109,014 |
335
+ | 9 | ye | 108,632 |
336
+ | 10 | una | 104,144 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
340
  | Rank | Word | Frequency |
341
  |------|------|-----------|
342
+ | 1 | koftinoff | 2 |
343
+ | 2 | landlocked | 2 |
344
+ | 3 | hamidi | 2 |
345
+ | 4 | tangy | 2 |
346
+ | 5 | sélignac | 2 |
347
+ | 6 | cômene | 2 |
348
+ | 7 | varneton | 2 |
349
+ | 8 | mackelway | 2 |
350
+ | 9 | wigutow | 2 |
351
+ | 10 | críspulo | 2 |
352
 
353
  ### Zipf's Law Analysis
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
+ | Zipf Coefficient | 1.0685 |
358
+ | R² (Goodness of Fit) | 0.998276 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
362
 
363
  | Top N Words | Coverage |
364
  |-------------|----------|
365
+ | Top 100 | 44.9% |
366
+ | Top 1,000 | 66.9% |
367
+ | Top 5,000 | 80.7% |
368
+ | Top 10,000 | 85.9% |
369
 
370
  ### Key Findings
371
 
372
+ - **Zipf Compliance:** R²=0.9983 indicates excellent adherence to Zipf's law
373
+ - **High Frequency Dominance:** Top 100 words cover 44.9% of corpus
374
+ - **Long Tail:** 172,961 words needed for remaining 14.1% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
 
384
 
385
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
386
 
 
387
 
388
+ ### 5.1 Cross-Lingual Alignment
389
+
390
+ > *Note: Multilingual alignment visualization not available for this language.*
391
+
392
+
393
+ ### 5.2 Model Comparison
394
+
395
+ | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
+ |-------|-----------|----------|------------------|---------------|----------------|
397
+ | **mono_32d** | 32 | 0.8177 | 0.3514 | N/A | N/A |
398
+ | **mono_64d** | 64 | 0.8193 🏆 | 0.2716 | N/A | N/A |
399
+ | **mono_128d** | 128 | 0.8061 | 0.2141 | N/A | N/A |
400
 
401
  ### Key Findings
402
 
403
+ - **Best Isotropy:** mono_64d with 0.8193 (more uniform distribution)
404
+ - **Semantic Density:** Average pairwise similarity of 0.2790. Lower values indicate better semantic separation.
405
+ - **Alignment Quality:** No aligned models evaluated in this run.
406
+ - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
+ ## 6. Morphological Analysis (Experimental)
410
+
411
+ > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
+
413
+ This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
+
415
+ ### 6.1 Productivity & Complexity
416
+
417
+ | Metric | Value | Interpretation | Recommendation |
418
+ |--------|-------|----------------|----------------|
419
+ | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
+ | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
+
422
+ ### 6.2 Affix Inventory (Productive Units)
423
+
424
+ These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
425
+
426
+ #### Productive Prefixes
427
+ | Prefix | Examples |
428
+ |--------|----------|
429
+ | `-co` | colleges, consagratos, consumible |
430
+ | `-ca` | camelot, caldero, cabellera |
431
+ | `-ma` | mardy, manaba, maeztu |
432
+
433
+ #### Productive Suffixes
434
+ | Suffix | Examples |
435
+ |--------|----------|
436
+ | `-s` | peraleios, noveciercos, engueradas |
437
+ | `-a` | gina, pátria, aquileya |
438
+ | `-as` | engueradas, febas, alimentadas |
439
+ | `-os` | peraleios, noveciercos, consagratos |
440
+ | `-an` | reflectan, goodman, recolectan |
441
+ | `-es` | detalles, colleges, valses |
442
+
443
+ ### 6.3 Bound Stems (Lexical Roots)
444
+
445
+ Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
446
+
447
+ | Stem | Cohesion | Substitutability | Examples |
448
+ |------|----------|------------------|----------|
449
+ | `ento` | 1.86x | 126 contexts | lento, rento, vento |
450
+ | `cion` | 1.91x | 110 contexts | scion, nacion, accion |
451
+ | `ient` | 1.67x | 177 contexts | aient, dient, oient |
452
+ | `rago` | 2.01x | 59 contexts | ragot, drago, crago |
453
+ | `ranc` | 1.63x | 140 contexts | ranch, rancó, rance |
454
+ | `enci` | 1.55x | 164 contexts | encia, renci, venciu |
455
+ | `laci` | 2.02x | 49 contexts | lacio, glacio, placid |
456
+ | `nter` | 1.55x | 144 contexts | anter, unter, enter |
457
+ | `obla` | 1.85x | 56 contexts | pobla, dobla, robla |
458
+ | `renc` | 1.66x | 81 contexts | arenc, renci, rencor |
459
+ | `ació` | 1.87x | 47 contexts | ación, nació, fació |
460
+ | `mbre` | 1.66x | 75 contexts | ambre, ombre, mbret |
461
+
462
+ ### 6.4 Affix Compatibility (Co-occurrence)
463
+
464
+ This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
465
+
466
+ | Prefix | Suffix | Frequency | Examples |
467
+ |--------|--------|-----------|----------|
468
+ | `-co` | `-s` | 61 words | conformes, columbus |
469
+ | `-co` | `-a` | 58 words | comunicaba, conservata |
470
+ | `-ca` | `-s` | 54 words | caseilles, cavalls |
471
+ | `-ca` | `-a` | 46 words | carezza, carabaza |
472
+ | `-ma` | `-a` | 38 words | maquinista, mavumengwana |
473
+ | `-ma` | `-s` | 31 words | mamuts, mads |
474
+ | `-ca` | `-as` | 17 words | carpaticas, castanyas |
475
+ | `-co` | `-as` | 16 words | conillas, coladas |
476
+ | `-ca` | `-os` | 12 words | carpos, capuzamientos |
477
+ | `-co` | `-es` | 11 words | conformes, contimparables |
478
+
479
+ ### 6.5 Recursive Morpheme Segmentation
480
+
481
+ Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
482
+
483
+ | Word | Suggested Split | Confidence | Stem |
484
+ |------|-----------------|------------|------|
485
+ | roncaleses | **`roncal-es-es`** | 6.0 | `roncal` |
486
+ | coinciden | **`co-inciden`** | 4.5 | `inciden` |
487
+ | processos | **`process-os`** | 4.5 | `process` |
488
+ | productoras | **`productor-as`** | 4.5 | `productor` |
489
+ | cobianchi | **`co-bianchi`** | 4.5 | `bianchi` |
490
+ | elefantes | **`elefant-es`** | 4.5 | `elefant` |
491
+ | musicales | **`musical-es`** | 4.5 | `musical` |
492
+ | capelleta | **`ca-pelleta`** | 4.5 | `pelleta` |
493
+ | lumerosas | **`lumer-os-as`** | 3.0 | `lumer` |
494
+ | cantalojas | **`ca-ntaloj-as`** | 3.0 | `ntaloj` |
495
+ | confiscatos | **`co-nfiscat-os`** | 3.0 | `nfiscat` |
496
+ | concentraban | **`co-ncentrab-an`** | 3.0 | `ncentrab` |
497
+ | cavanilles | **`ca-vanill-es`** | 3.0 | `vanill` |
498
+ | aldeyanos | **`aldey-an-os`** | 3.0 | `aldey` |
499
+ | cascavillos | **`ca-scavill-os`** | 3.0 | `scavill` |
500
+
501
+ ### 6.6 Linguistic Interpretation
502
+
503
+ > **Automated Insight:**
504
+ The language AN appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
505
+
506
+ ---
507
+ ## 7. Summary & Recommendations
508
 
509
  ![Performance Dashboard](visualizations/performance_dashboard.png)
510
 
 
512
 
513
  | Component | Recommended | Rationale |
514
  |-----------|-------------|-----------|
515
+ | Tokenizer | **64k BPE** | Best compression (4.27x) |
516
+ | N-gram | **2-gram** | Lowest perplexity (258) |
517
+ | Markov | **Context-4** | Highest predictability (92.6%) |
518
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
519
 
520
+
521
  ---
522
  ## Appendix: Metrics Glossary & Interpretation Guide
523
 
 
707
  author = {Kamali, Omar},
708
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
709
  year = {2025},
710
+ doi = {10.5281/zenodo.18073153},
711
+ publisher = {Zenodo},
712
  url = {https://huggingface.co/wikilangs}
713
  institution = {Omneity Labs}
714
  }
 
724
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
725
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
726
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
727
+ - 🤝 Sponsor: [Featherless AI](https://featherless.ai)
728
  ---
729
  *Generated by Wikilangs Models Pipeline*
730
 
731
+ *Report Date: 2026-01-03 05:38:36*
models/embeddings/monolingual/an_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df977b20d5a3138783d7bf5a29de1bc1087ae8adcf91357a08b6df3286a11c57
3
- size 1160074298
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b8c8d2f8e8ebd6d647e7092d20c2a5ed3abae1a07a6be40fc84c516534b000d
3
+ size 1148906690
models/embeddings/monolingual/an_128d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 128,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 130625
13
  }
 
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 128
13
  },
14
+ "vocab_size": 119918
15
  }
models/embeddings/monolingual/an_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a91f101e748ee0ad7dfaa908fad3faa7fc759c6736c6983d93227a6782d7011a
3
- size 291754298
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:227c09966b020164fd97d17f0e971bef21897af0662c9891e19c26eef18f815d
3
+ size 288809666
models/embeddings/monolingual/an_32d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 32,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 130625
13
  }
 
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 32
13
  },
14
+ "vocab_size": 119918
15
  }
models/embeddings/monolingual/an_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68087cbf97ce11afd0878309f550fb79e3d9de063a23e6bcf07049c3996b50e8
3
- size 581194298
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:168f92e58a097a484a5136a652e39c7b532d3e83d40af551f9b434d64c32dcf2
3
+ size 575508674
models/embeddings/monolingual/an_64d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 64,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 130625
13
  }
 
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 64
13
  },
14
+ "vocab_size": 119918
15
  }
models/subword_markov/an_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72a3cba7b373771551a54b5cf2cbc6318340e1a3501f9b25f3d8d2f48c472a23
3
- size 184463
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d40de84446df679c4cebd27cec50dd996c043fbace52eee0439eb6badc7bd7c
3
+ size 168642
models/subword_markov/an_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_contexts": 3250,
6
- "total_transitions": 82537174
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_contexts": 3499,
6
+ "total_transitions": 69109076
7
  }
models/subword_markov/an_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9fd27d05dfe93d7d9c282432331494cc61942215e42be9ce61f99ac74a7cf3f7
3
- size 1142612
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49319842d520d6479015d48b0398bc41858ef988fef862a150994662fcc06982
3
+ size 916009
models/subword_markov/an_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_contexts": 23920,
6
- "total_transitions": 82486435
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_contexts": 20583,
6
+ "total_transitions": 69059397
7
  }
models/subword_markov/an_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1253e4ca1ee70bcf8b2ad676ddf40fff69b1220391f20884e1357bcafdecddc8
3
- size 5043098
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:706cb13def2cb1c8316e030700d89c8a6b8edcdaa283466b09d5fe99ab709294
3
+ size 3807898
models/subword_markov/an_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_contexts": 143854,
6
- "total_transitions": 82435696
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_contexts": 109746,
6
+ "total_transitions": 69009718
7
  }
models/subword_markov/an_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b7ca1fb83528f0a8a6947d8f7636bc221319b40e1be50b7b392667b6a626ecb3
3
- size 17868053
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eba517deec4e418e88d7689e4203c7c287c5ff4a05060f0fbb2342c404dccc8
3
+ size 13264812
models/subword_markov/an_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_contexts": 654131,
6
- "total_transitions": 82384957
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_contexts": 474426,
6
+ "total_transitions": 68960039
7
  }
models/subword_ngram/an_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e45d8c731d40f03a95d2d4171f1362f8c423ab80b642aec7287ad38018e6251d
3
- size 112683
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:555bb0a9950d43d338c420105f45d6e40844826ad59879138e4521a5e4f7bc0c
3
+ size 93665
models/subword_ngram/an_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_ngrams": 8390,
6
- "total_ngrams": 82537174
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_ngrams": 7000,
6
+ "total_ngrams": 69109076
7
  }
models/subword_ngram/an_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e8f3eb6d597d9d55c84231a3112486a81249b52737f684c64905bb039763c82
3
- size 875250
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f78a3129dc57d3cdb79e700b2f8fd170e91b6a063ad7ecc8c3970aa700eb2eba
3
+ size 691123
models/subword_ngram/an_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_ngrams": 70003,
6
- "total_ngrams": 82486435
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_ngrams": 52839,
6
+ "total_ngrams": 69059397
7
  }
models/subword_ngram/an_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd8db606ff5dd4ef0b5fb54501a844e424ac0fab787cef5b599cdde9d02d1e43
3
- size 4436397
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c2ad5d14d9c914207a8289e32db63c141e19a1ca414e8a0d26bb2bd2d7c2251
3
+ size 3358033
models/subword_ngram/an_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "an",
5
- "unique_ngrams": 389532,
6
- "total_ngrams": 82435696
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "an",
5
+ "unique_ngrams": 289840,
6
+ "total_ngrams": 69009718
7
  }
models/tokenizer/an_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a69d504bfe94be166ec6bfb3523a637720073719779a402e09380c3be46f5ed1
3
- size 510191
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e6718ee086df807a9b8e62706d7c765c76896efe91b3e0c87de4d756afbca43
3
+ size 511370
models/tokenizer/an_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/an_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8d18b8e75d8486ad231a507c071537bae5b2fe7257de2c6b01e9d4b1bc9f37f
3
- size 789754
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a3ebce2687e88197aaa7a091e4f04cb995c75343de7c69b2a452444c0e4ec12
3
+ size 791243
models/tokenizer/an_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/an_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2e6056e5c18ce40dfc1c918e4ffa96c311c860c6d18ff1eb23841c68899cfcd
3
- size 1358196
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7137d416046b5467fc533de58fb10d2dfc01761285b5489a24416366e18446ce
3
+ size 1364521
models/tokenizer/an_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/an_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bfbfee5efa99c394ac891a3f732716a915eead3966ae1e24a13c2951303196e8
3
- size 373704
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b38bd103587bec698ef8bfa6fc1eca198cf371a05427efd0b9100615abdbd5
3
+ size 374587
models/tokenizer/an_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/an_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4707a0b58ba6a4c9c5677662e07dabe17ddde1b83806f3d2f55abb4beaf51637
3
- size 3310355
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899ce817bf3d0cd63c52370382d0c8f7e06c5beb0c78ed09f131cf1aafd3d182
3
+ size 2932502
models/vocabulary/an_vocabulary_metadata.json CHANGED
@@ -1,16 +1,17 @@
1
  {
2
  "language": "an",
3
- "vocabulary_size": 217616,
 
4
  "statistics": {
5
- "type_token_ratio": 0.03914079689391589,
6
  "coverage": {
7
- "top_100": 0.4213646709719088,
8
- "top_1000": 0.6475247834171538,
9
- "top_5000": 0.7852817418595878,
10
- "top_10000": 0.8360937926682902
11
  },
12
- "hapax_count": 308414,
13
- "hapax_ratio": 0.5863049635952322,
14
- "total_documents": 50739
15
  }
16
  }
 
1
  {
2
  "language": "an",
3
+ "vocabulary_size": 182961,
4
+ "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.03129810058501218,
7
  "coverage": {
8
+ "top_100": 0.4415954090654393,
9
+ "top_1000": 0.6581393006575422,
10
+ "top_5000": 0.793948937884549,
11
+ "top_10000": 0.8454613838789675
12
  },
13
+ "hapax_count": 184348,
14
+ "hapax_ratio": 0.50188805610535,
15
+ "total_documents": 49679
16
  }
17
  }
models/word_markov/an_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e4e3be111b565571799df73c6bc31d0d51b6e089aa29260ceffb95042a709c64
3
- size 25436455
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24ca3e38b9546b9a06f5df3b46ba1a09d874251e2d187e8bdb92e634b9a97756
3
+ size 23502911
models/word_markov/an_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_contexts": 525914,
6
- "total_transitions": 17591589
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_contexts": 367064,
6
+ "total_transitions": 11686145
7
  }
models/word_markov/an_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7fa7fbbcf2879c8d8d4b0187b08a2c130097d304f1651be06b0290d592c31292
3
- size 69286803
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c73b675412ec88a37c27f3ed414e5087949843a731d927309077f06614513901
3
+ size 65110098
models/word_markov/an_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_contexts": 2944964,
6
- "total_transitions": 17540850
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_contexts": 2775765,
6
+ "total_transitions": 11636466
7
  }
models/word_markov/an_markov_ctx3_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b280d2444a1e04abe65378050ad54cd0a9e8454e02100eaa0530275d565379f
3
- size 118851189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e609aeb7661d18f4043b4e6b0ed80afed876c3c30105b27506fba72732e47b0e
3
+ size 103695006
models/word_markov/an_markov_ctx3_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_contexts": 6515045,
6
- "total_transitions": 17490111
7
  }
 
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_contexts": 5573548,
6
+ "total_transitions": 11586787
7
  }
models/word_markov/an_markov_ctx4_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d44caecd25449243adac00d70be5caf8377f1fa6e9d2b68eabe22a90eabe0bd8
3
- size 156148146
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a638efc93bf5156a281bc3520210801cecab11b50bfc0049d2319bf73f3192
3
+ size 130961488
models/word_markov/an_markov_ctx4_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_contexts": 9175931,
6
- "total_transitions": 17439372
7
  }
 
2
  "context_size": 4,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_contexts": 7417165,
6
+ "total_transitions": 11537108
7
  }
models/word_ngram/an_2gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b5e5d9c55b22bc997a7bc412142ff833f50070bba74fc40661e41738efd2e8f
3
- size 3974678
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61e57673546517ca4e0a925bb3a888da339f48eba31c8c84442546c480d14b96
3
+ size 3221474
models/word_ngram/an_2gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_ngrams": 299504,
6
- "total_ngrams": 17591589
7
  }
 
2
  "n": 2,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_ngrams": 231538,
6
+ "total_ngrams": 11686145
7
  }
models/word_ngram/an_3gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:520fd6eb5f53501aefe99f6d10405529fe4fc67a873bf2c192b942f70d1e3333
3
- size 9375840
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da9caf8a85ac19844e4a241494138ca37ea47684fde967f32db04f2aa4b9a824
3
+ size 6789536
models/word_ngram/an_3gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_ngrams": 654301,
6
- "total_ngrams": 17540850
7
  }
 
2
  "n": 3,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_ngrams": 456958,
6
+ "total_ngrams": 11636466
7
  }
models/word_ngram/an_4gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d0e04ea7106db32719462b5a9b93c4318c4769ea2c2071995be760c72248952
3
- size 19565625
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54224a8ae68f476eda16f0412c6b35eed02a6aeaf371db0788c6e009b177d091
3
+ size 13943741
models/word_ngram/an_4gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "word",
4
  "language": "an",
5
- "unique_ngrams": 1306932,
6
- "total_ngrams": 17490111
7
  }
 
2
  "n": 4,
3
  "variant": "word",
4
  "language": "an",
5
+ "unique_ngrams": 890645,
6
+ "total_ngrams": 11586787
7
  }
visualizations/embedding_isotropy.png CHANGED
visualizations/embedding_norms.png CHANGED
visualizations/embedding_similarity.png CHANGED

Git LFS Details

  • SHA256: c0afc364047c2091bf85d1e0da4175579cb687c07326f20ef6c035af787b0043
  • Pointer size: 131 Bytes
  • Size of remote file: 145 kB

Git LFS Details

  • SHA256: 9568803e52ff0cca20ee70e1ca945083b1fde3da44b258c12cc4e0e98ca631fa
  • Pointer size: 131 Bytes
  • Size of remote file: 148 kB
visualizations/markov_branching.png CHANGED
visualizations/markov_contexts.png CHANGED