Upload all models and assets for an (20251001)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +310 -135
- models/embeddings/monolingual/an_128d.bin +2 -2
- models/embeddings/monolingual/an_128d_metadata.json +5 -3
- models/embeddings/monolingual/an_32d.bin +2 -2
- models/embeddings/monolingual/an_32d_metadata.json +5 -3
- models/embeddings/monolingual/an_64d.bin +2 -2
- models/embeddings/monolingual/an_64d_metadata.json +5 -3
- models/subword_markov/an_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/an_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/an_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/an_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/an_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/an_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/an_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/an_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/an_2gram_subword.parquet +2 -2
- models/subword_ngram/an_2gram_subword_metadata.json +2 -2
- models/subword_ngram/an_3gram_subword.parquet +2 -2
- models/subword_ngram/an_3gram_subword_metadata.json +2 -2
- models/subword_ngram/an_4gram_subword.parquet +2 -2
- models/subword_ngram/an_4gram_subword_metadata.json +2 -2
- models/tokenizer/an_tokenizer_16k.model +2 -2
- models/tokenizer/an_tokenizer_16k.vocab +0 -0
- models/tokenizer/an_tokenizer_32k.model +2 -2
- models/tokenizer/an_tokenizer_32k.vocab +0 -0
- models/tokenizer/an_tokenizer_64k.model +2 -2
- models/tokenizer/an_tokenizer_64k.vocab +0 -0
- models/tokenizer/an_tokenizer_8k.model +2 -2
- models/tokenizer/an_tokenizer_8k.vocab +0 -0
- models/vocabulary/an_vocabulary.parquet +2 -2
- models/vocabulary/an_vocabulary_metadata.json +10 -9
- models/word_markov/an_markov_ctx1_word.parquet +2 -2
- models/word_markov/an_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/an_markov_ctx2_word.parquet +2 -2
- models/word_markov/an_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/an_markov_ctx3_word.parquet +2 -2
- models/word_markov/an_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/an_markov_ctx4_word.parquet +2 -2
- models/word_markov/an_markov_ctx4_word_metadata.json +2 -2
- models/word_ngram/an_2gram_word.parquet +2 -2
- models/word_ngram/an_2gram_word_metadata.json +2 -2
- models/word_ngram/an_3gram_word.parquet +2 -2
- models/word_ngram/an_3gram_word_metadata.json +2 -2
- models/word_ngram/an_4gram_word.parquet +2 -2
- models/word_ngram/an_4gram_word_metadata.json +2 -2
- visualizations/embedding_isotropy.png +0 -0
- visualizations/embedding_norms.png +0 -0
- visualizations/embedding_similarity.png +2 -2
- visualizations/markov_branching.png +0 -0
- visualizations/markov_contexts.png +0 -0
README.md
CHANGED
|
@@ -23,14 +23,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value:
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# AN - Wikilangs Models
|
|
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,53 +70,57 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** |
|
| 78 |
-
| **64k** |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:** `
|
| 85 |
|
| 86 |
| Vocab | Tokens | Count |
|
| 87 |
|-------|--------|-------|
|
| 88 |
-
| 8k | `▁
|
| 89 |
-
| 16k | `▁
|
| 90 |
-
| 32k | `▁
|
| 91 |
-
| 64k | `▁
|
| 92 |
|
| 93 |
-
**Sample 2:** `
|
| 94 |
-
Chesa terreno con muito cheso u chacimiento de cheso.
|
| 95 |
-
Chesa, m...`
|
| 96 |
|
| 97 |
| Vocab | Tokens | Count |
|
| 98 |
|-------|--------|-------|
|
| 99 |
-
| 8k | `▁
|
| 100 |
-
| 16k | `▁
|
| 101 |
-
| 32k | `▁
|
| 102 |
-
| 64k | `▁
|
| 103 |
|
| 104 |
-
**Sample 3:** `
|
| 105 |
|
| 106 |
| Vocab | Tokens | Count |
|
| 107 |
|-------|--------|-------|
|
| 108 |
-
| 8k | `▁
|
| 109 |
-
| 16k | `▁
|
| 110 |
-
| 32k | `▁
|
| 111 |
-
| 64k | `▁
|
| 112 |
|
| 113 |
|
| 114 |
### Key Findings
|
| 115 |
|
| 116 |
-
- **Best Compression:** 64k achieves
|
| 117 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 118 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 119 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 120 |
|
|
@@ -123,57 +129,89 @@ Chesa, m...`
|
|
| 123 |
|
| 124 |

|
| 125 |
|
|
|
|
|
|
|
| 126 |

|
| 127 |
|
| 128 |
### Results
|
| 129 |
|
| 130 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 131 |
-
|
| 132 |
-
| **2-gram** |
|
| 133 |
-
| **2-gram** |
|
| 134 |
-
| **3-gram** |
|
| 135 |
-
| **3-gram** | 2,
|
| 136 |
-
| **4-gram** |
|
| 137 |
-
| **4-gram** |
|
| 138 |
|
| 139 |
### Top 5 N-grams by Size
|
| 140 |
|
| 141 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
| Rank | N-gram | Count |
|
| 144 |
|------|--------|-------|
|
| 145 |
-
| 1 | `
|
| 146 |
-
| 2 |
|
| 147 |
-
| 3 | `
|
| 148 |
-
| 4 | `
|
| 149 |
-
| 5 | `
|
| 150 |
|
| 151 |
-
**3-grams:**
|
| 152 |
|
| 153 |
| Rank | N-gram | Count |
|
| 154 |
|------|--------|-------|
|
| 155 |
-
| 1 | `d
|
| 156 |
-
| 2 | `d
|
| 157 |
-
| 3 |
|
| 158 |
-
| 4 | `
|
| 159 |
-
| 5 |
|
| 160 |
|
| 161 |
-
**4-grams:**
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
-
| 1 |
|
| 166 |
-
| 2 |
|
| 167 |
-
| 3 |
|
| 168 |
-
| 4 |
|
| 169 |
-
| 5 |
|
| 170 |
|
| 171 |
|
| 172 |
### Key Findings
|
| 173 |
|
| 174 |
-
- **Best Perplexity:** 2-gram with
|
| 175 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 176 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 177 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 178 |
|
| 179 |
---
|
|
@@ -181,55 +219,86 @@ Chesa, m...`
|
|
| 181 |
|
| 182 |

|
| 183 |
|
|
|
|
|
|
|
| 184 |

|
| 185 |
|
| 186 |
### Results
|
| 187 |
|
| 188 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 189 |
-
|
| 190 |
-
| **1** | 0.
|
| 191 |
-
| **1** |
|
| 192 |
-
| **2** | 0.
|
| 193 |
-
| **2** | 0.
|
| 194 |
-
| **3** | 0.
|
| 195 |
-
| **3** | 0.
|
| 196 |
-
| **4** | 0.
|
| 197 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
**Context Size 1:**
|
| 204 |
|
| 205 |
-
1.
|
| 206 |
-
2. `
|
| 207 |
-
3.
|
| 208 |
|
| 209 |
**Context Size 2:**
|
| 210 |
|
| 211 |
-
1. `
|
| 212 |
-
2.
|
| 213 |
-
3. `
|
| 214 |
|
| 215 |
**Context Size 3:**
|
| 216 |
|
| 217 |
-
1. `
|
| 218 |
-
2. `
|
| 219 |
-
3.
|
| 220 |
|
| 221 |
**Context Size 4:**
|
| 222 |
|
| 223 |
-
1.
|
| 224 |
-
2.
|
| 225 |
-
3.
|
| 226 |
|
| 227 |
|
| 228 |
### Key Findings
|
| 229 |
|
| 230 |
-
- **Best Predictability:** Context-4 with
|
| 231 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 232 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 233 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 234 |
|
| 235 |
---
|
|
@@ -245,64 +314,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 245 |
|
| 246 |
| Metric | Value |
|
| 247 |
|--------|-------|
|
| 248 |
-
| Vocabulary Size |
|
| 249 |
-
| Total Tokens |
|
| 250 |
-
| Mean Frequency |
|
| 251 |
| Median Frequency | 4 |
|
| 252 |
-
| Frequency Std Dev |
|
| 253 |
|
| 254 |
### Most Common Words
|
| 255 |
|
| 256 |
| Rank | Word | Frequency |
|
| 257 |
|------|------|-----------|
|
| 258 |
-
| 1 | de |
|
| 259 |
-
| 2 | d |
|
| 260 |
-
| 3 | a |
|
| 261 |
-
| 4 | en |
|
| 262 |
-
| 5 | o |
|
| 263 |
-
| 6 | y |
|
| 264 |
-
| 7 |
|
| 265 |
-
| 8 |
|
| 266 |
-
| 9 |
|
| 267 |
-
| 10 |
|
| 268 |
|
| 269 |
### Least Common Words (from vocabulary)
|
| 270 |
|
| 271 |
| Rank | Word | Frequency |
|
| 272 |
|------|------|-----------|
|
| 273 |
-
| 1 |
|
| 274 |
-
| 2 |
|
| 275 |
-
| 3 |
|
| 276 |
-
| 4 |
|
| 277 |
-
| 5 |
|
| 278 |
-
| 6 |
|
| 279 |
-
| 7 |
|
| 280 |
-
| 8 |
|
| 281 |
-
| 9 |
|
| 282 |
-
| 10 |
|
| 283 |
|
| 284 |
### Zipf's Law Analysis
|
| 285 |
|
| 286 |
| Metric | Value |
|
| 287 |
|--------|-------|
|
| 288 |
-
| Zipf Coefficient | 1.
|
| 289 |
-
| R² (Goodness of Fit) | 0.
|
| 290 |
| Adherence Quality | **excellent** |
|
| 291 |
|
| 292 |
### Coverage Analysis
|
| 293 |
|
| 294 |
| Top N Words | Coverage |
|
| 295 |
|-------------|----------|
|
| 296 |
-
| Top 100 |
|
| 297 |
-
| Top 1,000 | 66.
|
| 298 |
-
| Top 5,000 | 80.
|
| 299 |
-
| Top 10,000 | 85.
|
| 300 |
|
| 301 |
### Key Findings
|
| 302 |
|
| 303 |
-
- **Zipf Compliance:** R²=0.
|
| 304 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 305 |
-
- **Long Tail:**
|
| 306 |
|
| 307 |
---
|
| 308 |
## 5. Word Embeddings Evaluation
|
|
@@ -315,24 +384,127 @@ Below are text samples generated from each Markov chain model:
|
|
| 315 |
|
| 316 |

|
| 317 |
|
| 318 |
-
### Model Comparison
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
### Key Findings
|
| 328 |
|
| 329 |
-
- **Best Isotropy:**
|
| 330 |
-
- **
|
| 331 |
-
- **
|
| 332 |
-
- **Recommendation:**
|
| 333 |
|
| 334 |
---
|
| 335 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |

|
| 338 |
|
|
@@ -340,11 +512,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 340 |
|
| 341 |
| Component | Recommended | Rationale |
|
| 342 |
|-----------|-------------|-----------|
|
| 343 |
-
| Tokenizer | **
|
| 344 |
-
| N-gram | **
|
| 345 |
-
| Markov | **Context-4** | Highest predictability (
|
| 346 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 347 |
|
|
|
|
| 348 |
---
|
| 349 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 350 |
|
|
@@ -534,7 +707,8 @@ If you use these models in your research, please cite:
|
|
| 534 |
author = {Kamali, Omar},
|
| 535 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 536 |
year = {2025},
|
| 537 |
-
|
|
|
|
| 538 |
url = {https://huggingface.co/wikilangs}
|
| 539 |
institution = {Omneity Labs}
|
| 540 |
}
|
|
@@ -550,7 +724,8 @@ MIT License - Free for academic and commercial use.
|
|
| 550 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 551 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 552 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 553 |
---
|
| 554 |
*Generated by Wikilangs Models Pipeline*
|
| 555 |
|
| 556 |
-
*Report Date:
|
|
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
+
value: 4.267
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
+
value: 0.8193
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
+
value: 0
|
| 33 |
+
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
# AN - Wikilangs Models
|
|
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
| 53 |
+
|
| 54 |

|
| 55 |
|
| 56 |
### Analysis and Evaluation
|
|
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
+
- [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
|
| 64 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
| 67 |
|
|
|
|
| 70 |
|
| 71 |

|
| 72 |
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+

|
| 76 |
+
|
| 77 |
+

|
| 78 |
+
|
| 79 |
### Results
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
+
| **8k** | 3.551x | 3.55 | 0.1259% | 1,215,405 |
|
| 84 |
+
| **16k** | 3.845x | 3.85 | 0.1363% | 1,122,403 |
|
| 85 |
+
| **32k** | 4.084x | 4.08 | 0.1448% | 1,056,930 |
|
| 86 |
+
| **64k** | 4.267x 🏆 | 4.27 | 0.1513% | 1,011,533 |
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
+
**Sample 1:** `Anyos: - - Decenios: Anyos - Anyos - Anyos Sieglos: Sieglo X - Sieglo XI - Siegl...`
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
+
| 8k | `▁anyos : ▁- ▁- ▁decenios : ▁anyos ▁- ▁anyos ▁- ... (+15 more)` | 25 |
|
| 97 |
+
| 16k | `▁anyos : ▁- ▁- ▁decenios : ▁anyos ▁- ▁anyos ▁- ... (+15 more)` | 25 |
|
| 98 |
+
| 32k | `▁anyos : ▁- ▁- ▁decenios : ▁anyos ▁- ▁anyos ▁- ... (+15 more)` | 25 |
|
| 99 |
+
| 64k | `▁anyos : ▁- ▁- ▁decenios : ▁anyos ▁- ▁anyos ▁- ... (+15 more)` | 25 |
|
| 100 |
|
| 101 |
+
**Sample 2:** `Lo Buçon (en francés Aubusson) ye una localidat y comuna francesa situada en o d...`
|
|
|
|
|
|
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁lo ▁bu ç on ▁( en ▁francés ▁a ub us ... (+28 more)` | 38 |
|
| 106 |
+
| 16k | `▁lo ▁bu çon ▁( en ▁francés ▁a ub us son ... (+25 more)` | 35 |
|
| 107 |
+
| 32k | `▁lo ▁bu çon ▁( en ▁francés ▁aub us son ) ... (+24 more)` | 34 |
|
| 108 |
+
| 64k | `▁lo ▁bu çon ▁( en ▁francés ▁aub us son ) ... (+22 more)` | 32 |
|
| 109 |
|
| 110 |
+
**Sample 3:** `Holzmann ye un lugar d'o municipio de Chieming en o sud-este de Bavera, Alemanya...`
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
+
| 8k | `▁hol z mann ▁ye ▁un ▁lugar ▁d ' o ▁municipio ... (+28 more)` | 38 |
|
| 115 |
+
| 16k | `▁hol z mann ▁ye ▁un ▁lugar ▁d ' o ▁municipio ... (+28 more)` | 38 |
|
| 116 |
+
| 32k | `▁holz mann ▁ye ▁un ▁lugar ▁d ' o ▁municipio ▁de ... (+26 more)` | 36 |
|
| 117 |
+
| 64k | `▁holz mann ▁ye ▁un ▁lugar ▁d ' o ▁municipio ▁de ... (+26 more)` | 36 |
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
+
- **Best Compression:** 64k achieves 4.267x compression
|
| 123 |
+
- **Lowest UNK Rate:** 8k with 0.1259% unknown tokens
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
|
|
| 129 |
|
| 130 |

|
| 131 |
|
| 132 |
+

|
| 133 |
+
|
| 134 |

|
| 135 |
|
| 136 |
### Results
|
| 137 |
|
| 138 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
+
| **2-gram** | Word | 25,531 | 14.64 | 231,538 | 16.8% | 37.4% |
|
| 141 |
+
| **2-gram** | Subword | 258 🏆 | 8.01 | 7,000 | 68.7% | 99.3% |
|
| 142 |
+
| **3-gram** | Word | 86,752 | 16.40 | 456,958 | 8.4% | 23.0% |
|
| 143 |
+
| **3-gram** | Subword | 2,153 | 11.07 | 52,839 | 25.8% | 73.4% |
|
| 144 |
+
| **4-gram** | Word | 208,198 | 17.67 | 890,645 | 6.8% | 17.2% |
|
| 145 |
+
| **4-gram** | Subword | 12,189 | 13.57 | 289,840 | 12.6% | 39.7% |
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
| 149 |
+
**2-grams (Word):**
|
| 150 |
+
|
| 151 |
+
| Rank | N-gram | Count |
|
| 152 |
+
|------|--------|-------|
|
| 153 |
+
| 1 | `d a` | 106,922 |
|
| 154 |
+
| 2 | `d o` | 105,903 |
|
| 155 |
+
| 3 | `en a` | 60,539 |
|
| 156 |
+
| 4 | `en o` | 45,891 |
|
| 157 |
+
| 5 | `de l` | 37,271 |
|
| 158 |
+
|
| 159 |
+
**3-grams (Word):**
|
| 160 |
+
|
| 161 |
+
| Rank | N-gram | Count |
|
| 162 |
+
|------|--------|-------|
|
| 163 |
+
| 1 | `a provincia de` | 17,407 |
|
| 164 |
+
| 2 | `d a provincia` | 13,389 |
|
| 165 |
+
| 3 | `una superficie de` | 12,709 |
|
| 166 |
+
| 4 | `suya población ye` | 12,409 |
|
| 167 |
+
| 5 | `población ye de` | 12,354 |
|
| 168 |
+
|
| 169 |
+
**4-grams (Word):**
|
| 170 |
+
|
| 171 |
+
| Rank | N-gram | Count |
|
| 172 |
+
|------|--------|-------|
|
| 173 |
+
| 1 | `suya población ye de` | 12,288 |
|
| 174 |
+
| 2 | `en una superficie de` | 12,121 |
|
| 175 |
+
| 3 | `d a provincia de` | 12,081 |
|
| 176 |
+
| 4 | `habitants en una superficie` | 11,267 |
|
| 177 |
+
| 5 | `a suya población ye` | 11,250 |
|
| 178 |
+
|
| 179 |
+
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
+
| 1 | `a _` | 1,856,533 |
|
| 184 |
+
| 2 | `_ d` | 1,594,808 |
|
| 185 |
+
| 3 | `e _` | 1,531,455 |
|
| 186 |
+
| 4 | `s _` | 1,293,859 |
|
| 187 |
+
| 5 | `n _` | 1,201,430 |
|
| 188 |
|
| 189 |
+
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
+
| 1 | `_ d e` | 886,389 |
|
| 194 |
+
| 2 | `d e _` | 768,800 |
|
| 195 |
+
| 3 | `_ d '` | 488,988 |
|
| 196 |
+
| 4 | `e n _` | 472,591 |
|
| 197 |
+
| 5 | `_ e n` | 449,047 |
|
| 198 |
|
| 199 |
+
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
+
| 1 | `_ d e _` | 734,534 |
|
| 204 |
+
| 2 | `_ e n _` | 392,856 |
|
| 205 |
+
| 3 | `_ d ' a` | 233,826 |
|
| 206 |
+
| 4 | `a _ d e` | 183,991 |
|
| 207 |
+
| 5 | `_ c o n` | 176,849 |
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
+
- **Best Perplexity:** 2-gram (subword) with 258
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
+
- **Coverage:** Top-1000 patterns cover ~40% of corpus
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
|
|
| 219 |
|
| 220 |

|
| 221 |
|
| 222 |
+

|
| 223 |
+
|
| 224 |

|
| 225 |
|
| 226 |
### Results
|
| 227 |
|
| 228 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
+
| **1** | Word | 0.9747 | 1.965 | 7.58 | 367,064 | 2.5% |
|
| 231 |
+
| **1** | Subword | 0.7827 | 1.720 | 5.89 | 3,499 | 21.7% |
|
| 232 |
+
| **2** | Word | 0.3412 | 1.267 | 2.01 | 2,775,765 | 65.9% |
|
| 233 |
+
| **2** | Subword | 0.8316 | 1.780 | 5.33 | 20,583 | 16.8% |
|
| 234 |
+
| **3** | Word | 0.1546 | 1.113 | 1.33 | 5,573,548 | 84.5% |
|
| 235 |
+
| **3** | Subword | 0.7758 | 1.712 | 4.33 | 109,746 | 22.4% |
|
| 236 |
+
| **4** | Word | 0.0738 🏆 | 1.052 | 1.14 | 7,417,165 | 92.6% |
|
| 237 |
+
| **4** | Subword | 0.7143 | 1.641 | 3.37 | 474,426 | 28.6% |
|
| 238 |
+
|
| 239 |
+
### Generated Text Samples (Word-based)
|
| 240 |
+
|
| 241 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 242 |
|
| 243 |
+
**Context Size 1:**
|
| 244 |
+
|
| 245 |
+
1. `de barcelona cuan obtiene un municipio espanyol o suyo segundo punto alchido d o brien moore`
|
| 246 |
+
2. `d a z vs üü alto penedés información de chunio de argañán a camera a population`
|
| 247 |
+
3. `a risilleta a suya identidat y bi ha una economía como dancing in europe bbc d`
|
| 248 |
+
|
| 249 |
+
**Context Size 2:**
|
| 250 |
+
|
| 251 |
+
1. `d a provincia de barcelona iste matrimonio naixoron 2 fillas a on a hansa montó as suyas`
|
| 252 |
+
2. `d o far west anexionando muitos territorios que componeban a corona d aragón que explicitament denom...`
|
| 253 |
+
3. `en a suya población ye de 643 habitants en una superficie de 16 01 491 teruel torralba`
|
| 254 |
+
|
| 255 |
+
**Context Size 3:**
|
| 256 |
+
|
| 257 |
+
1. `a provincia de uesca d as penyas de riglos solano n 42 27 29 21 e 0 27`
|
| 258 |
+
2. `d a provincia de zaragoza en la suya part d o conchunto d o sud con a huerta`
|
| 259 |
+
3. `una superficie de 88 4 km y una densidat de población de 10 44 hab km cifras oficiales`
|
| 260 |
+
|
| 261 |
+
**Context Size 4:**
|
| 262 |
|
| 263 |
+
1. `suya población ye de en una superficie de 20 1 km y una densidat de población de 5 24`
|
| 264 |
+
2. `en una superficie de 82 09 km con una densidat d hab km cheografía a localidat de gonnosnò ye`
|
| 265 |
+
3. `d a provincia de chirona y partiu chudicial de teruel catálogo de pueblos y municipios de aragón est...`
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
### Generated Text Samples (Subword-based)
|
| 269 |
+
|
| 270 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
+
1. `_ptonena_le_a_ev`
|
| 275 |
+
2. `atarro_d'a_erra.`
|
| 276 |
+
3. `e_ula_coril._qus`
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
+
1. `a_forangacia_ingà`
|
| 281 |
+
2. `_de_le_d'isten_co`
|
| 282 |
+
3. `e_ye_suff_una_fes`
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
+
1. `_de_barrisor_intas`
|
| 287 |
+
2. `de_a_prencias)._th`
|
| 288 |
+
3. `_d'a_latín_a_lo_si`
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
+
1. `_de_l'animent_y_pol`
|
| 293 |
+
2. `_en_tiembre_de_davi`
|
| 294 |
+
3. `_d'a_por_o_nuesta_y`
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
+
- **Best Predictability:** Context-4 (word) with 92.6% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
+
- **Memory Trade-off:** Larger contexts require more storage (474,426 contexts)
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
+
| Vocabulary Size | 182,961 |
|
| 318 |
+
| Total Tokens | 11,551,476 |
|
| 319 |
+
| Mean Frequency | 63.14 |
|
| 320 |
| Median Frequency | 4 |
|
| 321 |
+
| Frequency Std Dev | 2812.87 |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
+
| 1 | de | 738,428 |
|
| 328 |
+
| 2 | d | 494,628 |
|
| 329 |
+
| 3 | a | 437,762 |
|
| 330 |
+
| 4 | en | 406,259 |
|
| 331 |
+
| 5 | o | 301,745 |
|
| 332 |
+
| 6 | y | 244,743 |
|
| 333 |
+
| 7 | que | 126,444 |
|
| 334 |
+
| 8 | l | 109,014 |
|
| 335 |
+
| 9 | ye | 108,632 |
|
| 336 |
+
| 10 | una | 104,144 |
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
+
| 1 | koftinoff | 2 |
|
| 343 |
+
| 2 | landlocked | 2 |
|
| 344 |
+
| 3 | hamidi | 2 |
|
| 345 |
+
| 4 | tangy | 2 |
|
| 346 |
+
| 5 | sélignac | 2 |
|
| 347 |
+
| 6 | cômene | 2 |
|
| 348 |
+
| 7 | varneton | 2 |
|
| 349 |
+
| 8 | mackelway | 2 |
|
| 350 |
+
| 9 | wigutow | 2 |
|
| 351 |
+
| 10 | críspulo | 2 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
+
| Zipf Coefficient | 1.0685 |
|
| 358 |
+
| R² (Goodness of Fit) | 0.998276 |
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
+
| Top 100 | 44.9% |
|
| 366 |
+
| Top 1,000 | 66.9% |
|
| 367 |
+
| Top 5,000 | 80.7% |
|
| 368 |
+
| Top 10,000 | 85.9% |
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
+
- **Zipf Compliance:** R²=0.9983 indicates excellent adherence to Zipf's law
|
| 373 |
+
- **High Frequency Dominance:** Top 100 words cover 44.9% of corpus
|
| 374 |
+
- **Long Tail:** 172,961 words needed for remaining 14.1% coverage
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 384 |
|
| 385 |

|
| 386 |
|
|
|
|
| 387 |
|
| 388 |
+
### 5.1 Cross-Lingual Alignment
|
| 389 |
+
|
| 390 |
+
> *Note: Multilingual alignment visualization not available for this language.*
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
### 5.2 Model Comparison
|
| 394 |
+
|
| 395 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
+
| **mono_32d** | 32 | 0.8177 | 0.3514 | N/A | N/A |
|
| 398 |
+
| **mono_64d** | 64 | 0.8193 🏆 | 0.2716 | N/A | N/A |
|
| 399 |
+
| **mono_128d** | 128 | 0.8061 | 0.2141 | N/A | N/A |
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
+
- **Best Isotropy:** mono_64d with 0.8193 (more uniform distribution)
|
| 404 |
+
- **Semantic Density:** Average pairwise similarity of 0.2790. Lower values indicate better semantic separation.
|
| 405 |
+
- **Alignment Quality:** No aligned models evaluated in this run.
|
| 406 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
+
## 6. Morphological Analysis (Experimental)
|
| 410 |
+
|
| 411 |
+
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
+
|
| 413 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
+
|
| 415 |
+
### 6.1 Productivity & Complexity
|
| 416 |
+
|
| 417 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
+
|--------|-------|----------------|----------------|
|
| 419 |
+
| Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
|
| 420 |
+
| Idiomaticity Gap | **-1.000** | Low formulaic content | - |
|
| 421 |
+
|
| 422 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
+
|
| 424 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 425 |
+
|
| 426 |
+
#### Productive Prefixes
|
| 427 |
+
| Prefix | Examples |
|
| 428 |
+
|--------|----------|
|
| 429 |
+
| `-co` | colleges, consagratos, consumible |
|
| 430 |
+
| `-ca` | camelot, caldero, cabellera |
|
| 431 |
+
| `-ma` | mardy, manaba, maeztu |
|
| 432 |
+
|
| 433 |
+
#### Productive Suffixes
|
| 434 |
+
| Suffix | Examples |
|
| 435 |
+
|--------|----------|
|
| 436 |
+
| `-s` | peraleios, noveciercos, engueradas |
|
| 437 |
+
| `-a` | gina, pátria, aquileya |
|
| 438 |
+
| `-as` | engueradas, febas, alimentadas |
|
| 439 |
+
| `-os` | peraleios, noveciercos, consagratos |
|
| 440 |
+
| `-an` | reflectan, goodman, recolectan |
|
| 441 |
+
| `-es` | detalles, colleges, valses |
|
| 442 |
+
|
| 443 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 444 |
+
|
| 445 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 446 |
+
|
| 447 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 448 |
+
|------|----------|------------------|----------|
|
| 449 |
+
| `ento` | 1.86x | 126 contexts | lento, rento, vento |
|
| 450 |
+
| `cion` | 1.91x | 110 contexts | scion, nacion, accion |
|
| 451 |
+
| `ient` | 1.67x | 177 contexts | aient, dient, oient |
|
| 452 |
+
| `rago` | 2.01x | 59 contexts | ragot, drago, crago |
|
| 453 |
+
| `ranc` | 1.63x | 140 contexts | ranch, rancó, rance |
|
| 454 |
+
| `enci` | 1.55x | 164 contexts | encia, renci, venciu |
|
| 455 |
+
| `laci` | 2.02x | 49 contexts | lacio, glacio, placid |
|
| 456 |
+
| `nter` | 1.55x | 144 contexts | anter, unter, enter |
|
| 457 |
+
| `obla` | 1.85x | 56 contexts | pobla, dobla, robla |
|
| 458 |
+
| `renc` | 1.66x | 81 contexts | arenc, renci, rencor |
|
| 459 |
+
| `ació` | 1.87x | 47 contexts | ación, nació, fació |
|
| 460 |
+
| `mbre` | 1.66x | 75 contexts | ambre, ombre, mbret |
|
| 461 |
+
|
| 462 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 463 |
+
|
| 464 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 465 |
+
|
| 466 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 467 |
+
|--------|--------|-----------|----------|
|
| 468 |
+
| `-co` | `-s` | 61 words | conformes, columbus |
|
| 469 |
+
| `-co` | `-a` | 58 words | comunicaba, conservata |
|
| 470 |
+
| `-ca` | `-s` | 54 words | caseilles, cavalls |
|
| 471 |
+
| `-ca` | `-a` | 46 words | carezza, carabaza |
|
| 472 |
+
| `-ma` | `-a` | 38 words | maquinista, mavumengwana |
|
| 473 |
+
| `-ma` | `-s` | 31 words | mamuts, mads |
|
| 474 |
+
| `-ca` | `-as` | 17 words | carpaticas, castanyas |
|
| 475 |
+
| `-co` | `-as` | 16 words | conillas, coladas |
|
| 476 |
+
| `-ca` | `-os` | 12 words | carpos, capuzamientos |
|
| 477 |
+
| `-co` | `-es` | 11 words | conformes, contimparables |
|
| 478 |
+
|
| 479 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 480 |
+
|
| 481 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 482 |
+
|
| 483 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 484 |
+
|------|-----------------|------------|------|
|
| 485 |
+
| roncaleses | **`roncal-es-es`** | 6.0 | `roncal` |
|
| 486 |
+
| coinciden | **`co-inciden`** | 4.5 | `inciden` |
|
| 487 |
+
| processos | **`process-os`** | 4.5 | `process` |
|
| 488 |
+
| productoras | **`productor-as`** | 4.5 | `productor` |
|
| 489 |
+
| cobianchi | **`co-bianchi`** | 4.5 | `bianchi` |
|
| 490 |
+
| elefantes | **`elefant-es`** | 4.5 | `elefant` |
|
| 491 |
+
| musicales | **`musical-es`** | 4.5 | `musical` |
|
| 492 |
+
| capelleta | **`ca-pelleta`** | 4.5 | `pelleta` |
|
| 493 |
+
| lumerosas | **`lumer-os-as`** | 3.0 | `lumer` |
|
| 494 |
+
| cantalojas | **`ca-ntaloj-as`** | 3.0 | `ntaloj` |
|
| 495 |
+
| confiscatos | **`co-nfiscat-os`** | 3.0 | `nfiscat` |
|
| 496 |
+
| concentraban | **`co-ncentrab-an`** | 3.0 | `ncentrab` |
|
| 497 |
+
| cavanilles | **`ca-vanill-es`** | 3.0 | `vanill` |
|
| 498 |
+
| aldeyanos | **`aldey-an-os`** | 3.0 | `aldey` |
|
| 499 |
+
| cascavillos | **`ca-scavill-os`** | 3.0 | `scavill` |
|
| 500 |
+
|
| 501 |
+
### 6.6 Linguistic Interpretation
|
| 502 |
+
|
| 503 |
+
> **Automated Insight:**
|
| 504 |
+
The language AN appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
|
| 505 |
+
|
| 506 |
+
---
|
| 507 |
+
## 7. Summary & Recommendations
|
| 508 |
|
| 509 |

|
| 510 |
|
|
|
|
| 512 |
|
| 513 |
| Component | Recommended | Rationale |
|
| 514 |
|-----------|-------------|-----------|
|
| 515 |
+
| Tokenizer | **64k BPE** | Best compression (4.27x) |
|
| 516 |
+
| N-gram | **2-gram** | Lowest perplexity (258) |
|
| 517 |
+
| Markov | **Context-4** | Highest predictability (92.6%) |
|
| 518 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 519 |
|
| 520 |
+
|
| 521 |
---
|
| 522 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 523 |
|
|
|
|
| 707 |
author = {Kamali, Omar},
|
| 708 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 709 |
year = {2025},
|
| 710 |
+
doi = {10.5281/zenodo.18073153},
|
| 711 |
+
publisher = {Zenodo},
|
| 712 |
url = {https://huggingface.co/wikilangs}
|
| 713 |
institution = {Omneity Labs}
|
| 714 |
}
|
|
|
|
| 724 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 725 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 726 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 727 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 728 |
---
|
| 729 |
*Generated by Wikilangs Models Pipeline*
|
| 730 |
|
| 731 |
+
*Report Date: 2026-01-03 05:38:36*
|
models/embeddings/monolingual/an_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b8c8d2f8e8ebd6d647e7092d20c2a5ed3abae1a07a6be40fc84c516534b000d
|
| 3 |
+
size 1148906690
|
models/embeddings/monolingual/an_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 119918
|
| 15 |
}
|
models/embeddings/monolingual/an_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:227c09966b020164fd97d17f0e971bef21897af0662c9891e19c26eef18f815d
|
| 3 |
+
size 288809666
|
models/embeddings/monolingual/an_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 119918
|
| 15 |
}
|
models/embeddings/monolingual/an_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:168f92e58a097a484a5136a652e39c7b532d3e83d40af551f9b434d64c32dcf2
|
| 3 |
+
size 575508674
|
models/embeddings/monolingual/an_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 119918
|
| 15 |
}
|
models/subword_markov/an_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d40de84446df679c4cebd27cec50dd996c043fbace52eee0439eb6badc7bd7c
|
| 3 |
+
size 168642
|
models/subword_markov/an_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 3499,
|
| 6 |
+
"total_transitions": 69109076
|
| 7 |
}
|
models/subword_markov/an_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49319842d520d6479015d48b0398bc41858ef988fef862a150994662fcc06982
|
| 3 |
+
size 916009
|
models/subword_markov/an_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 20583,
|
| 6 |
+
"total_transitions": 69059397
|
| 7 |
}
|
models/subword_markov/an_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:706cb13def2cb1c8316e030700d89c8a6b8edcdaa283466b09d5fe99ab709294
|
| 3 |
+
size 3807898
|
models/subword_markov/an_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 109746,
|
| 6 |
+
"total_transitions": 69009718
|
| 7 |
}
|
models/subword_markov/an_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eba517deec4e418e88d7689e4203c7c287c5ff4a05060f0fbb2342c404dccc8
|
| 3 |
+
size 13264812
|
models/subword_markov/an_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 474426,
|
| 6 |
+
"total_transitions": 68960039
|
| 7 |
}
|
models/subword_ngram/an_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:555bb0a9950d43d338c420105f45d6e40844826ad59879138e4521a5e4f7bc0c
|
| 3 |
+
size 93665
|
models/subword_ngram/an_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_ngrams": 7000,
|
| 6 |
+
"total_ngrams": 69109076
|
| 7 |
}
|
models/subword_ngram/an_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f78a3129dc57d3cdb79e700b2f8fd170e91b6a063ad7ecc8c3970aa700eb2eba
|
| 3 |
+
size 691123
|
models/subword_ngram/an_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_ngrams": 52839,
|
| 6 |
+
"total_ngrams": 69059397
|
| 7 |
}
|
models/subword_ngram/an_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c2ad5d14d9c914207a8289e32db63c141e19a1ca414e8a0d26bb2bd2d7c2251
|
| 3 |
+
size 3358033
|
models/subword_ngram/an_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_ngrams": 289840,
|
| 6 |
+
"total_ngrams": 69009718
|
| 7 |
}
|
models/tokenizer/an_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e6718ee086df807a9b8e62706d7c765c76896efe91b3e0c87de4d756afbca43
|
| 3 |
+
size 511370
|
models/tokenizer/an_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/an_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a3ebce2687e88197aaa7a091e4f04cb995c75343de7c69b2a452444c0e4ec12
|
| 3 |
+
size 791243
|
models/tokenizer/an_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/an_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7137d416046b5467fc533de58fb10d2dfc01761285b5489a24416366e18446ce
|
| 3 |
+
size 1364521
|
models/tokenizer/an_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/an_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6b38bd103587bec698ef8bfa6fc1eca198cf371a05427efd0b9100615abdbd5
|
| 3 |
+
size 374587
|
models/tokenizer/an_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/an_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:899ce817bf3d0cd63c52370382d0c8f7e06c5beb0c78ed09f131cf1aafd3d182
|
| 3 |
+
size 2932502
|
models/vocabulary/an_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "an",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "an",
|
| 3 |
+
"vocabulary_size": 182961,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.03129810058501218,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.4415954090654393,
|
| 9 |
+
"top_1000": 0.6581393006575422,
|
| 10 |
+
"top_5000": 0.793948937884549,
|
| 11 |
+
"top_10000": 0.8454613838789675
|
| 12 |
},
|
| 13 |
+
"hapax_count": 184348,
|
| 14 |
+
"hapax_ratio": 0.50188805610535,
|
| 15 |
+
"total_documents": 49679
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/an_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24ca3e38b9546b9a06f5df3b46ba1a09d874251e2d187e8bdb92e634b9a97756
|
| 3 |
+
size 23502911
|
models/word_markov/an_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 367064,
|
| 6 |
+
"total_transitions": 11686145
|
| 7 |
}
|
models/word_markov/an_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c73b675412ec88a37c27f3ed414e5087949843a731d927309077f06614513901
|
| 3 |
+
size 65110098
|
models/word_markov/an_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 2775765,
|
| 6 |
+
"total_transitions": 11636466
|
| 7 |
}
|
models/word_markov/an_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e609aeb7661d18f4043b4e6b0ed80afed876c3c30105b27506fba72732e47b0e
|
| 3 |
+
size 103695006
|
models/word_markov/an_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 5573548,
|
| 6 |
+
"total_transitions": 11586787
|
| 7 |
}
|
models/word_markov/an_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1a638efc93bf5156a281bc3520210801cecab11b50bfc0049d2319bf73f3192
|
| 3 |
+
size 130961488
|
models/word_markov/an_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_contexts": 7417165,
|
| 6 |
+
"total_transitions": 11537108
|
| 7 |
}
|
models/word_ngram/an_2gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61e57673546517ca4e0a925bb3a888da339f48eba31c8c84442546c480d14b96
|
| 3 |
+
size 3221474
|
models/word_ngram/an_2gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_ngrams": 231538,
|
| 6 |
+
"total_ngrams": 11686145
|
| 7 |
}
|
models/word_ngram/an_3gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da9caf8a85ac19844e4a241494138ca37ea47684fde967f32db04f2aa4b9a824
|
| 3 |
+
size 6789536
|
models/word_ngram/an_3gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_ngrams": 456958,
|
| 6 |
+
"total_ngrams": 11636466
|
| 7 |
}
|
models/word_ngram/an_4gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54224a8ae68f476eda16f0412c6b35eed02a6aeaf371db0788c6e009b177d091
|
| 3 |
+
size 13943741
|
models/word_ngram/an_4gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "an",
|
| 5 |
+
"unique_ngrams": 890645,
|
| 6 |
+
"total_ngrams": 11586787
|
| 7 |
}
|
visualizations/embedding_isotropy.png
CHANGED
|
|
visualizations/embedding_norms.png
CHANGED
|
|
visualizations/embedding_similarity.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
visualizations/markov_branching.png
CHANGED
|
|
visualizations/markov_contexts.png
CHANGED
|
|