Upload all models and assets for ady (20251001)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +307 -139
- models/embeddings/monolingual/ady_128d.bin +2 -2
- models/embeddings/monolingual/ady_128d_metadata.json +5 -3
- models/embeddings/monolingual/ady_32d.bin +2 -2
- models/embeddings/monolingual/ady_32d_metadata.json +5 -3
- models/embeddings/monolingual/ady_64d.bin +2 -2
- models/embeddings/monolingual/ady_64d_metadata.json +5 -3
- models/subword_markov/ady_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/ady_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/ady_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/ady_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/ady_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/ady_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/ady_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/ady_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/ady_2gram_subword.parquet +2 -2
- models/subword_ngram/ady_2gram_subword_metadata.json +2 -2
- models/subword_ngram/ady_3gram_subword.parquet +2 -2
- models/subword_ngram/ady_3gram_subword_metadata.json +2 -2
- models/subword_ngram/ady_4gram_subword.parquet +2 -2
- models/subword_ngram/ady_4gram_subword_metadata.json +2 -2
- models/tokenizer/ady_tokenizer_16k.model +2 -2
- models/tokenizer/ady_tokenizer_16k.vocab +0 -0
- models/tokenizer/ady_tokenizer_32k.model +2 -2
- models/tokenizer/ady_tokenizer_32k.vocab +0 -0
- models/tokenizer/ady_tokenizer_8k.model +2 -2
- models/tokenizer/ady_tokenizer_8k.vocab +0 -0
- models/vocabulary/ady_vocabulary.parquet +2 -2
- models/vocabulary/ady_vocabulary_metadata.json +10 -9
- models/word_markov/ady_markov_ctx1_word.parquet +2 -2
- models/word_markov/ady_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/ady_markov_ctx2_word.parquet +2 -2
- models/word_markov/ady_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/ady_markov_ctx3_word.parquet +2 -2
- models/word_markov/ady_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/ady_markov_ctx4_word.parquet +2 -2
- models/word_markov/ady_markov_ctx4_word_metadata.json +2 -2
- models/word_ngram/ady_2gram_word.parquet +2 -2
- models/word_ngram/ady_2gram_word_metadata.json +2 -2
- models/word_ngram/ady_3gram_word.parquet +2 -2
- models/word_ngram/ady_3gram_word_metadata.json +2 -2
- models/word_ngram/ady_4gram_word.parquet +2 -2
- models/word_ngram/ady_4gram_word_metadata.json +2 -2
- visualizations/embedding_isotropy.png +0 -0
- visualizations/embedding_norms.png +0 -0
- visualizations/embedding_similarity.png +2 -2
- visualizations/markov_branching.png +0 -0
- visualizations/markov_contexts.png +0 -0
- visualizations/markov_entropy.png +0 -0
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/ngram_coverage.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -23,14 +23,14 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
# ADY - Wikilangs Models
|
|
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,58 +70,53 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** | 3.
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** | 4.
|
| 78 |
-
| **64k** | 4.453x 🏆 | 4.39 | 0.1404% | 137,476 |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:**
|
| 85 |
-
|
| 86 |
-
Category:Къалэхэр
|
| 87 |
-
Category:Японие`
|
| 88 |
|
| 89 |
| Vocab | Tokens | Count |
|
| 90 |
|-------|--------|-------|
|
| 91 |
-
| 8k |
|
| 92 |
-
| 16k |
|
| 93 |
-
| 32k |
|
| 94 |
-
| 64k | `▁киото ▁— ▁японием ▁и ▁къалэ . ▁category : къалэхэр ▁category ... (+2 more)` | 12 |
|
| 95 |
|
| 96 |
-
**Sample 2:**
|
| 97 |
|
| 98 |
| Vocab | Tokens | Count |
|
| 99 |
|-------|--------|-------|
|
| 100 |
-
| 8k |
|
| 101 |
-
| 16k |
|
| 102 |
-
| 32k |
|
| 103 |
-
| 64k | `▁ереван ▁() ▁– ▁армение ▁и ▁къэлэшъхьа i . ▁нэбгырэ ▁млн ... (+20 more)` | 30 |
|
| 104 |
-
|
| 105 |
-
**Sample 3:** `thumb
|
| 106 |
-
thumb
|
| 107 |
-
Ишъхъэрэ Америкэ — континент.
|
| 108 |
|
| 109 |
-
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
-
| 8k | `▁thumb
|
| 114 |
-
| 16k | `▁thumb
|
| 115 |
-
| 32k | `▁thumb
|
| 116 |
-
| 64k | `▁thumb ▁thumb ▁ишъхъэрэ ▁америкэ ▁— ▁континент . ▁ч i ырэу ... (+27 more)` | 37 |
|
| 117 |
|
| 118 |
|
| 119 |
### Key Findings
|
| 120 |
|
| 121 |
-
- **Best Compression:**
|
| 122 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 123 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 124 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 125 |
|
|
@@ -128,57 +125,89 @@ thumb
|
|
| 128 |
|
| 129 |

|
| 130 |
|
|
|
|
|
|
|
| 131 |

|
| 132 |
|
| 133 |
### Results
|
| 134 |
|
| 135 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 136 |
-
|
| 137 |
-
| **2-gram** |
|
| 138 |
-
| **2-gram** |
|
| 139 |
-
| **3-gram** |
|
| 140 |
-
| **3-gram** |
|
| 141 |
-
| **4-gram** |
|
| 142 |
-
| **4-gram** |
|
| 143 |
|
| 144 |
### Top 5 N-grams by Size
|
| 145 |
|
| 146 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
| Rank | N-gram | Count |
|
| 149 |
|------|--------|-------|
|
| 150 |
-
| 1 |
|
| 151 |
-
| 2 |
|
| 152 |
-
| 3 |
|
| 153 |
-
| 4 |
|
| 154 |
-
| 5 |
|
| 155 |
|
| 156 |
-
**
|
| 157 |
|
| 158 |
| Rank | N-gram | Count |
|
| 159 |
|------|--------|-------|
|
| 160 |
-
| 1 |
|
| 161 |
-
| 2 |
|
| 162 |
-
| 3 |
|
| 163 |
-
| 4 |
|
| 164 |
-
| 5 |
|
| 165 |
|
| 166 |
-
**
|
| 167 |
|
| 168 |
| Rank | N-gram | Count |
|
| 169 |
|------|--------|-------|
|
| 170 |
-
| 1 |
|
| 171 |
-
| 2 |
|
| 172 |
-
| 3 |
|
| 173 |
-
| 4 |
|
| 174 |
-
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
|
| 177 |
### Key Findings
|
| 178 |
|
| 179 |
-
- **Best Perplexity:** 2-gram with
|
| 180 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 181 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 182 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 183 |
|
| 184 |
---
|
|
@@ -186,55 +215,86 @@ thumb
|
|
| 186 |
|
| 187 |

|
| 188 |
|
|
|
|
|
|
|
| 189 |

|
| 190 |
|
| 191 |
### Results
|
| 192 |
|
| 193 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 194 |
-
|
| 195 |
-
| **1** | 0.
|
| 196 |
-
| **1** | 1.
|
| 197 |
-
| **2** | 0.
|
| 198 |
-
| **2** | 1.
|
| 199 |
-
| **3** | 0.
|
| 200 |
-
| **3** | 0.
|
| 201 |
-
| **4** | 0.
|
| 202 |
-
| **4** | 0.
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
**Context Size 1:**
|
| 209 |
|
| 210 |
-
1.
|
| 211 |
-
2.
|
| 212 |
-
3.
|
| 213 |
|
| 214 |
**Context Size 2:**
|
| 215 |
|
| 216 |
-
1.
|
| 217 |
-
2.
|
| 218 |
-
3.
|
| 219 |
|
| 220 |
**Context Size 3:**
|
| 221 |
|
| 222 |
-
1.
|
| 223 |
-
2.
|
| 224 |
-
3.
|
| 225 |
|
| 226 |
**Context Size 4:**
|
| 227 |
|
| 228 |
-
1.
|
| 229 |
-
2.
|
| 230 |
-
3.
|
| 231 |
|
| 232 |
|
| 233 |
### Key Findings
|
| 234 |
|
| 235 |
-
- **Best Predictability:** Context-4 with
|
| 236 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 237 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 238 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 239 |
|
| 240 |
---
|
|
@@ -250,64 +310,64 @@ Below are text samples generated from each Markov chain model:
|
|
| 250 |
|
| 251 |
| Metric | Value |
|
| 252 |
|--------|-------|
|
| 253 |
-
| Vocabulary Size |
|
| 254 |
-
| Total Tokens |
|
| 255 |
-
| Mean Frequency | 6.
|
| 256 |
| Median Frequency | 3 |
|
| 257 |
-
| Frequency Std Dev |
|
| 258 |
|
| 259 |
### Most Common Words
|
| 260 |
|
| 261 |
| Rank | Word | Frequency |
|
| 262 |
|------|------|-----------|
|
| 263 |
-
| 1 | и | 1,
|
| 264 |
-
| 2 |
|
| 265 |
-
| 3 |
|
| 266 |
-
| 4 |
|
| 267 |
-
| 5 |
|
| 268 |
-
| 6 |
|
| 269 |
-
| 7 |
|
| 270 |
-
| 8 |
|
| 271 |
-
| 9 |
|
| 272 |
-
| 10 |
|
| 273 |
|
| 274 |
### Least Common Words (from vocabulary)
|
| 275 |
|
| 276 |
| Rank | Word | Frequency |
|
| 277 |
|------|------|-----------|
|
| 278 |
-
| 1 |
|
| 279 |
-
| 2 |
|
| 280 |
-
| 3 |
|
| 281 |
-
| 4 |
|
| 282 |
-
| 5 |
|
| 283 |
-
| 6 |
|
| 284 |
-
| 7 |
|
| 285 |
-
| 8 |
|
| 286 |
-
| 9 |
|
| 287 |
-
| 10 |
|
| 288 |
|
| 289 |
### Zipf's Law Analysis
|
| 290 |
|
| 291 |
| Metric | Value |
|
| 292 |
|--------|-------|
|
| 293 |
-
| Zipf Coefficient | 0.
|
| 294 |
-
| R² (Goodness of Fit) | 0.
|
| 295 |
| Adherence Quality | **excellent** |
|
| 296 |
|
| 297 |
### Coverage Analysis
|
| 298 |
|
| 299 |
| Top N Words | Coverage |
|
| 300 |
|-------------|----------|
|
| 301 |
-
| Top 100 |
|
| 302 |
-
| Top 1,000 |
|
| 303 |
-
| Top 5,000 |
|
| 304 |
| Top 10,000 | 0.0% |
|
| 305 |
|
| 306 |
### Key Findings
|
| 307 |
|
| 308 |
-
- **Zipf Compliance:** R²=0.
|
| 309 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 310 |
-
- **Long Tail:** -
|
| 311 |
|
| 312 |
---
|
| 313 |
## 5. Word Embeddings Evaluation
|
|
@@ -320,24 +380,129 @@ Below are text samples generated from each Markov chain model:
|
|
| 320 |
|
| 321 |

|
| 322 |
|
| 323 |
-
### Model Comparison
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
### Key Findings
|
| 333 |
|
| 334 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 335 |
-
- **
|
| 336 |
-
- **
|
| 337 |
-
- **Recommendation:**
|
| 338 |
|
| 339 |
---
|
| 340 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |

|
| 343 |
|
|
@@ -345,11 +510,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 345 |
|
| 346 |
| Component | Recommended | Rationale |
|
| 347 |
|-----------|-------------|-----------|
|
| 348 |
-
| Tokenizer | **32k BPE** | Best compression (4.
|
| 349 |
-
| N-gram | **
|
| 350 |
-
| Markov | **Context-4** | Highest predictability (
|
| 351 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 352 |
|
|
|
|
| 353 |
---
|
| 354 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 355 |
|
|
@@ -539,7 +705,8 @@ If you use these models in your research, please cite:
|
|
| 539 |
author = {Kamali, Omar},
|
| 540 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 541 |
year = {2025},
|
| 542 |
-
|
|
|
|
| 543 |
url = {https://huggingface.co/wikilangs}
|
| 544 |
institution = {Omneity Labs}
|
| 545 |
}
|
|
@@ -555,7 +722,8 @@ MIT License - Free for academic and commercial use.
|
|
| 555 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 556 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 557 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 558 |
---
|
| 559 |
*Generated by Wikilangs Models Pipeline*
|
| 560 |
|
| 561 |
-
*Report Date:
|
|
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
+
value: 4.231
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
+
value: 0.4730
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
+
value: 0
|
| 33 |
+
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
# ADY - Wikilangs Models
|
|
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 48 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
| 53 |
+
|
| 54 |

|
| 55 |
|
| 56 |
### Analysis and Evaluation
|
|
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
+
- [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
|
| 64 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
| 67 |
|
|
|
|
| 70 |
|
| 71 |

|
| 72 |
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+

|
| 76 |
+
|
| 77 |
+

|
| 78 |
+
|
| 79 |
### Results
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
+
| **8k** | 3.442x | 3.45 | 0.1638% | 134,283 |
|
| 84 |
+
| **16k** | 3.798x | 3.80 | 0.1808% | 121,676 |
|
| 85 |
+
| **32k** | 4.231x 🏆 | 4.24 | 0.2014% | 109,215 |
|
|
|
|
| 86 |
|
| 87 |
### Tokenization Examples
|
| 88 |
|
| 89 |
Below are sample sentences tokenized with each vocabulary size:
|
| 90 |
|
| 91 |
+
**Sample 1:** `Шъхьафит — Ашэ псыхъо иджабгъу нэпкъы тес Адыгэ къуадж. районым хахьэ. Хым зы пэ...`
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
| Vocab | Tokens | Count |
|
| 94 |
|-------|--------|-------|
|
| 95 |
+
| 8k | `▁шъхьафит ▁— ▁ашэ ▁псыхъо ▁иджабгъу ▁нэпкъы ▁тес ▁адыгэ ▁къуадж . ... (+7 more)` | 17 |
|
| 96 |
+
| 16k | `▁шъхьафит ▁— ▁ашэ ▁псыхъо ▁иджабгъу ▁нэпкъы ▁тес ▁адыгэ ▁къуадж . ... (+7 more)` | 17 |
|
| 97 |
+
| 32k | `▁шъхьафит ▁— ▁ашэ ▁псыхъо ▁иджабгъу ▁нэпкъы ▁тес ▁адыгэ ▁къуадж . ... (+7 more)` | 17 |
|
|
|
|
| 98 |
|
| 99 |
+
**Sample 2:** `thumb Америкэ - чӀынэлъэшхухэр Iут зэхэт (Къыблэ Америкэмрэ, Ишъхъэрэмрэ) Тыгъэк...`
|
| 100 |
|
| 101 |
| Vocab | Tokens | Count |
|
| 102 |
|-------|--------|-------|
|
| 103 |
+
| 8k | `▁thumb ▁америкэ ▁- ▁чӏы нэлъэ шхухэр ▁i ут ▁зэхэт ▁( ... (+17 more)` | 27 |
|
| 104 |
+
| 16k | `▁thumb ▁америкэ ▁- ▁чӏынэлъэшхухэр ▁i ут ▁зэхэт ▁( къыблэ ▁америкэмрэ ... (+13 more)` | 23 |
|
| 105 |
+
| 32k | `▁thumb ▁америкэ ▁- ▁чӏынэлъэшхухэр ▁i ут ▁зэхэт ▁( къыблэ ▁америкэмрэ ... (+11 more)` | 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
**Sample 3:** `thumb Мамуныр мэз псэушъхьэхэмэ а щыщ. Мамунхэр чыг дэпшэиэным лъэшэу Мамуным и ...`
|
| 108 |
|
| 109 |
| Vocab | Tokens | Count |
|
| 110 |
|-------|--------|-------|
|
| 111 |
+
| 8k | `▁thumb ▁мамун ыр ▁мэз ▁псэушъхьэхэмэ ▁а ▁щыщ . ▁мамун хэр ... (+22 more)` | 32 |
|
| 112 |
+
| 16k | `▁thumb ▁мамуныр ▁мэз ▁псэушъхьэхэмэ ▁а ▁щыщ . ▁мамунхэр ▁ч ыг ... (+14 more)` | 24 |
|
| 113 |
+
| 32k | `▁thumb ▁мамуныр ▁мэз ▁псэушъхьэхэмэ ▁а ▁щыщ . ▁мамунхэр ▁чыг ▁дэпшэиэным ... (+10 more)` | 20 |
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
### Key Findings
|
| 117 |
|
| 118 |
+
- **Best Compression:** 32k achieves 4.231x compression
|
| 119 |
+
- **Lowest UNK Rate:** 8k with 0.1638% unknown tokens
|
| 120 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 121 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 122 |
|
|
|
|
| 125 |
|
| 126 |

|
| 127 |
|
| 128 |
+

|
| 129 |
+
|
| 130 |

|
| 131 |
|
| 132 |
### Results
|
| 133 |
|
| 134 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 135 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 136 |
+
| **2-gram** | Word | 418 | 8.71 | 593 | 45.3% | 100.0% |
|
| 137 |
+
| **2-gram** | Subword | 399 🏆 | 8.64 | 2,072 | 57.0% | 97.4% |
|
| 138 |
+
| **3-gram** | Word | 706 | 9.46 | 922 | 33.9% | 100.0% |
|
| 139 |
+
| **3-gram** | Subword | 2,788 | 11.44 | 11,614 | 24.5% | 65.1% |
|
| 140 |
+
| **4-gram** | Word | 2,848 | 11.48 | 3,264 | 13.1% | 44.3% |
|
| 141 |
+
| **4-gram** | Subword | 10,651 | 13.38 | 35,316 | 12.4% | 39.6% |
|
| 142 |
|
| 143 |
### Top 5 N-grams by Size
|
| 144 |
|
| 145 |
+
**2-grams (Word):**
|
| 146 |
+
|
| 147 |
+
| Rank | N-gram | Count |
|
| 148 |
+
|------|--------|-------|
|
| 149 |
+
| 1 | `нэбгырэ млн` | 169 |
|
| 150 |
+
| 2 | `къехъу щэпсэу` | 104 |
|
| 151 |
+
| 3 | `картым тетэу` | 100 |
|
| 152 |
+
| 4 | `м къехъу` | 89 |
|
| 153 |
+
| 5 | `дло м` | 87 |
|
| 154 |
+
|
| 155 |
+
**3-grams (Word):**
|
| 156 |
|
| 157 |
| Rank | N-gram | Count |
|
| 158 |
|------|--------|-------|
|
| 159 |
+
| 1 | `м къехъу щэпсэу` | 76 |
|
| 160 |
+
| 2 | `къехъу щэпсэу хэгэгум` | 70 |
|
| 161 |
+
| 3 | `адыгэ республикэм и` | 48 |
|
| 162 |
+
| 4 | `дло м хахьэ` | 44 |
|
| 163 |
+
| 5 | `м хахьэ хэгъэгу` | 39 |
|
| 164 |
|
| 165 |
+
**4-grams (Word):**
|
| 166 |
|
| 167 |
| Rank | N-gram | Count |
|
| 168 |
|------|--------|-------|
|
| 169 |
+
| 1 | `м къехъу щэпсэу хэгэгум` | 45 |
|
| 170 |
+
| 2 | `дло м хахьэ хэгъэгу` | 39 |
|
| 171 |
+
| 3 | `еуропэм хэт къэралыгъу къэлэ` | 23 |
|
| 172 |
+
| 4 | `америкэм ит къэралыгъу къэлэ` | 19 |
|
| 173 |
+
| 5 | `азием ит къэралыгъу къэлэ` | 18 |
|
| 174 |
|
| 175 |
+
**2-grams (Subword):**
|
| 176 |
|
| 177 |
| Rank | N-gram | Count |
|
| 178 |
|------|--------|-------|
|
| 179 |
+
| 1 | `г ъ` | 9,349 |
|
| 180 |
+
| 2 | `ъ э` | 9,255 |
|
| 181 |
+
| 3 | `э _` | 8,719 |
|
| 182 |
+
| 4 | `м _` | 7,823 |
|
| 183 |
+
| 5 | `э р` | 6,778 |
|
| 184 |
+
|
| 185 |
+
**3-grams (Subword):**
|
| 186 |
+
|
| 187 |
+
| Rank | N-gram | Count |
|
| 188 |
+
|------|--------|-------|
|
| 189 |
+
| 1 | `г ъ э` | 4,967 |
|
| 190 |
+
| 2 | `_ к ъ` | 4,149 |
|
| 191 |
+
| 3 | `э м _` | 3,582 |
|
| 192 |
+
| 4 | `ы г ъ` | 3,357 |
|
| 193 |
+
| 5 | `э р _` | 3,016 |
|
| 194 |
+
|
| 195 |
+
**4-grams (Subword):**
|
| 196 |
+
|
| 197 |
+
| Rank | N-gram | Count |
|
| 198 |
+
|------|--------|-------|
|
| 199 |
+
| 1 | `ы г ъ э` | 1,903 |
|
| 200 |
+
| 2 | `х э р _` | 1,450 |
|
| 201 |
+
| 3 | `а г ъ э` | 1,351 |
|
| 202 |
+
| 4 | `х э м _` | 1,305 |
|
| 203 |
+
| 5 | `_ к ъ э` | 1,289 |
|
| 204 |
|
| 205 |
|
| 206 |
### Key Findings
|
| 207 |
|
| 208 |
+
- **Best Perplexity:** 2-gram (subword) with 399
|
| 209 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 210 |
+
- **Coverage:** Top-1000 patterns cover ~40% of corpus
|
| 211 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 212 |
|
| 213 |
---
|
|
|
|
| 215 |
|
| 216 |

|
| 217 |
|
| 218 |
+

|
| 219 |
+
|
| 220 |

|
| 221 |
|
| 222 |
### Results
|
| 223 |
|
| 224 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 225 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 226 |
+
| **1** | Word | 0.4365 | 1.353 | 2.10 | 22,306 | 56.3% |
|
| 227 |
+
| **1** | Subword | 1.4909 | 2.811 | 10.56 | 410 | 0.0% |
|
| 228 |
+
| **2** | Word | 0.0764 | 1.054 | 1.12 | 46,305 | 92.4% |
|
| 229 |
+
| **2** | Subword | 1.1481 | 2.216 | 5.61 | 4,325 | 0.0% |
|
| 230 |
+
| **3** | Word | 0.0240 | 1.017 | 1.03 | 51,243 | 97.6% |
|
| 231 |
+
| **3** | Subword | 0.7541 | 1.687 | 2.97 | 24,260 | 24.6% |
|
| 232 |
+
| **4** | Word | 0.0128 🏆 | 1.009 | 1.02 | 52,387 | 98.7% |
|
| 233 |
+
| **4** | Subword | 0.4304 | 1.348 | 1.86 | 72,077 | 57.0% |
|
| 234 |
+
|
| 235 |
+
### Generated Text Samples (Word-based)
|
| 236 |
|
| 237 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 238 |
|
| 239 |
+
**Context Size 1:**
|
| 240 |
+
|
| 241 |
+
1. `и 13 мэ ащыщэу адыгэр сыдигъокіи адыгэ къуаж ипшъэ итхьапӏэ иблэгъожъхэм афэгъэхьыгъэ мифхэр къызэра...`
|
| 242 |
+
2. `адыгэ хьатыкъуай унагъохэр тыркуем и плакат ныбэрынхьэблэ адыгэбзэ жэбзэ къабзэ ежь ныпым зызиушъомб...`
|
| 243 |
+
3. `м ахахьэ хэгъэгу шавкат мирзияев къэрал лӏышъхьэр кӏокӏо къызбэч кавказ заом ыпэкӏэ щыӏагъэхэмрэ якъ...`
|
| 244 |
+
|
| 245 |
+
**Context Size 2:**
|
| 246 |
+
|
| 247 |
+
1. `нэбгырэ млн 10 фэдиз тешӏагъэу анатолием ахэр агъэкощыгъэх тхыгъэ зэфэшъхьафхэм мэхьанэу каноничност...`
|
| 248 |
+
2. `къехъу щэпсэу я 84 хэгэгум 93 030 км я 26 испаныбзэр ащ нэмыкӏэу регионыбзэхэр иӏэх дло м`
|
| 249 |
+
3. `картым тетэу бразилие къыблэ америкэм ыгу ит германиер аустриер словакиер руманиер украинэр сербиер ...`
|
| 250 |
+
|
| 251 |
+
**Context Size 3:**
|
| 252 |
+
|
| 253 |
+
1. `м къехъу щэпсэу хэгэгум 2 149 690 км арапыбз сауд арабиер арап къэралыгъомэ ащыщмэ анахь хэгъэгу ащы...`
|
| 254 |
+
2. `къехъу щэпсэу хэгэгум 140 800 км непали дло м хахьэ хэгъэгу хассанал болкиах географие азием и гъунэ...`
|
| 255 |
+
3. `адыгэ республикэм и къэралыгъо премие илауреат дунэе адыгэ академием иакадемик къалэу шъачэ поселкэу...`
|
| 256 |
+
|
| 257 |
+
**Context Size 4:**
|
| 258 |
+
|
| 259 |
+
1. `м къехъу щэпсэу хэгэгум 9 596 960 км китаибзэр дло м хахьэ хэгъэгу эмомали рахмон къэрал тхьэматэр к...`
|
| 260 |
+
2. `дло м хахьэ хэгъэгу джоко видодо гуадзэр юсуф калла географие океан шъэфымымрэ инд океанымрэ азфагу ...`
|
| 261 |
+
3. `еуропэм хэт къэралыгъу къэлэ париж нэбгырэ млн 66 м къехъу щэпсэу хэгэгум 9 984 670 км я 2 англыбзэ`
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
### Generated Text Samples (Subword-based)
|
| 265 |
+
|
| 266 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 267 |
|
| 268 |
**Context Size 1:**
|
| 269 |
|
| 270 |
+
1. `_фим_хъэрикъолам`
|
| 271 |
+
2. `эм_илъу_-м_бэхь_`
|
| 272 |
+
3. `ышъэпсым_илнине_`
|
| 273 |
|
| 274 |
**Context Size 2:**
|
| 275 |
|
| 276 |
+
1. `гъэгъэ_асэу_ɡʲadə`
|
| 277 |
+
2. `ъэхьэухэм_епхъухь`
|
| 278 |
+
3. `э_хэгьэмрэ_щыпӏэ-`
|
| 279 |
|
| 280 |
**Context Size 3:**
|
| 281 |
|
| 282 |
+
1. `гъэ_уахэмрэ,_къыуи`
|
| 283 |
+
2. `_къалэбилэжъ_зэпхъ`
|
| 284 |
+
3. `эм_ыгугъэкон_къаук`
|
| 285 |
|
| 286 |
**Context Size 4:**
|
| 287 |
|
| 288 |
+
1. `ыгъэуцохэр_чэзыу-чэ`
|
| 289 |
+
2. `хэр_нэхъин_динхэр_з`
|
| 290 |
+
3. `агъэр_гъэп,_англыбз`
|
| 291 |
|
| 292 |
|
| 293 |
### Key Findings
|
| 294 |
|
| 295 |
+
- **Best Predictability:** Context-4 (word) with 98.7% predictability
|
| 296 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 297 |
+
- **Memory Trade-off:** Larger contexts require more storage (72,077 contexts)
|
| 298 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 299 |
|
| 300 |
---
|
|
|
|
| 310 |
|
| 311 |
| Metric | Value |
|
| 312 |
|--------|-------|
|
| 313 |
+
| Vocabulary Size | 7,032 |
|
| 314 |
+
| Total Tokens | 44,503 |
|
| 315 |
+
| Mean Frequency | 6.33 |
|
| 316 |
| Median Frequency | 3 |
|
| 317 |
+
| Frequency Std Dev | 22.13 |
|
| 318 |
|
| 319 |
### Most Common Words
|
| 320 |
|
| 321 |
| Rank | Word | Frequency |
|
| 322 |
|------|------|-----------|
|
| 323 |
+
| 1 | и | 1,013 |
|
| 324 |
+
| 2 | адыгэ | 666 |
|
| 325 |
+
| 3 | м | 489 |
|
| 326 |
+
| 4 | илъэсым | 398 |
|
| 327 |
+
| 5 | ащ | 391 |
|
| 328 |
+
| 6 | я | 309 |
|
| 329 |
+
| 7 | ары | 271 |
|
| 330 |
+
| 8 | нэбгырэ | 247 |
|
| 331 |
+
| 9 | а | 243 |
|
| 332 |
+
| 10 | ыкӏи | 211 |
|
| 333 |
|
| 334 |
### Least Common Words (from vocabulary)
|
| 335 |
|
| 336 |
| Rank | Word | Frequency |
|
| 337 |
|------|------|-----------|
|
| 338 |
+
| 1 | рсфср | 2 |
|
| 339 |
+
| 2 | серийнэ | 2 |
|
| 340 |
+
| 3 | ныбжьыкӏэхэри | 2 |
|
| 341 |
+
| 4 | зэратебэнагъэр | 2 |
|
| 342 |
+
| 5 | хираганэ | 2 |
|
| 343 |
+
| 6 | катаканэ | 2 |
|
| 344 |
+
| 7 | сербыбзэм | 2 |
|
| 345 |
+
| 8 | къыздикӏыгъэр | 2 |
|
| 346 |
+
| 9 | тыванбзэ | 2 |
|
| 347 |
+
| 10 | къызыл | 2 |
|
| 348 |
|
| 349 |
### Zipf's Law Analysis
|
| 350 |
|
| 351 |
| Metric | Value |
|
| 352 |
|--------|-------|
|
| 353 |
+
| Zipf Coefficient | 0.7821 |
|
| 354 |
+
| R² (Goodness of Fit) | 0.977951 |
|
| 355 |
| Adherence Quality | **excellent** |
|
| 356 |
|
| 357 |
### Coverage Analysis
|
| 358 |
|
| 359 |
| Top N Words | Coverage |
|
| 360 |
|-------------|----------|
|
| 361 |
+
| Top 100 | 29.3% |
|
| 362 |
+
| Top 1,000 | 60.6% |
|
| 363 |
+
| Top 5,000 | 90.9% |
|
| 364 |
| Top 10,000 | 0.0% |
|
| 365 |
|
| 366 |
### Key Findings
|
| 367 |
|
| 368 |
+
- **Zipf Compliance:** R²=0.9780 indicates excellent adherence to Zipf's law
|
| 369 |
+
- **High Frequency Dominance:** Top 100 words cover 29.3% of corpus
|
| 370 |
+
- **Long Tail:** -2,968 words needed for remaining 100.0% coverage
|
| 371 |
|
| 372 |
---
|
| 373 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 380 |
|
| 381 |

|
| 382 |
|
|
|
|
| 383 |
|
| 384 |
+
### 5.1 Cross-Lingual Alignment
|
| 385 |
+
|
| 386 |
+
> *Note: Multilingual alignment visualization not available for this language.*
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
### 5.2 Model Comparison
|
| 390 |
+
|
| 391 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 392 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 393 |
+
| **mono_32d** | 32 | 0.4730 🏆 | 0.4239 | N/A | N/A |
|
| 394 |
+
| **mono_64d** | 64 | 0.2201 | 0.4040 | N/A | N/A |
|
| 395 |
+
| **mono_128d** | 128 | 0.0372 | 0.3952 | N/A | N/A |
|
| 396 |
|
| 397 |
### Key Findings
|
| 398 |
|
| 399 |
+
- **Best Isotropy:** mono_32d with 0.4730 (more uniform distribution)
|
| 400 |
+
- **Semantic Density:** Average pairwise similarity of 0.4077. Lower values indicate better semantic separation.
|
| 401 |
+
- **Alignment Quality:** No aligned models evaluated in this run.
|
| 402 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 403 |
|
| 404 |
---
|
| 405 |
+
## 6. Morphological Analysis (Experimental)
|
| 406 |
+
|
| 407 |
+
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 408 |
+
|
| 409 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 410 |
+
|
| 411 |
+
### 6.1 Productivity & Complexity
|
| 412 |
+
|
| 413 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 414 |
+
|--------|-------|----------------|----------------|
|
| 415 |
+
| Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
|
| 416 |
+
| Idiomaticity Gap | **-1.000** | Low formulaic content | - |
|
| 417 |
+
|
| 418 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 419 |
+
|
| 420 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 421 |
+
|
| 422 |
+
#### Productive Prefixes
|
| 423 |
+
| Prefix | Examples |
|
| 424 |
+
|--------|----------|
|
| 425 |
+
| `-къ` | къыщыхъу, къуаджэхэу, къэбарым |
|
| 426 |
+
| `-зэ` | зэман, зэдаштэгъэ, зэпэух |
|
| 427 |
+
| `-къы` | къыщыхъу, къыщыфэфедэщтхэу, къызыхэкӏыгъэр |
|
| 428 |
+
|
| 429 |
+
#### Productive Suffixes
|
| 430 |
+
| Suffix | Examples |
|
| 431 |
+
|--------|----------|
|
| 432 |
+
| `-э` | ятхьэ, урысыбзэ, чылэ |
|
| 433 |
+
| `-м` | такъырым, шапхъэхэм, къэбарым |
|
| 434 |
+
| `-р` | латвиер, сыхьатыр, министр |
|
| 435 |
+
| `-эр` | курдхэр, щыгъынхэр, мэхъошхэр |
|
| 436 |
+
| `-эм` | шапхъэхэм, япэм, урымыбзэм |
|
| 437 |
+
| `-эу` | алфавитэу, илъхэу, игъэкӏотыгъэу |
|
| 438 |
+
| `-хэр` | курдхэр, щыгъынхэр, мэхъошхэр |
|
| 439 |
+
| `-рэ` | къагъэлъагъуэрэ, зыгорэ, цӏэмрэ |
|
| 440 |
+
|
| 441 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 442 |
+
|
| 443 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 444 |
+
|
| 445 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 446 |
+
|------|----------|------------------|----------|
|
| 447 |
+
| `тыгъ` | 1.78x | 28 contexts | тыгъэ, итыгъ, тыгъу |
|
| 448 |
+
| `ъагъ` | 2.15x | 14 contexts | пчъагъ, лъагъо, пчъагъэ |
|
| 449 |
+
| `агъэ` | 1.54x | 41 contexts | тхагъэ, благъэ, пчагъэ |
|
| 450 |
+
| `эпкъ` | 1.74x | 25 contexts | нэпкъ, тхэпкъ, лъэпкъ |
|
| 451 |
+
| `къуа` | 2.16x | 10 contexts | къуае, къуажэ, къуадж |
|
| 452 |
+
| `ъхьэ` | 1.78x | 16 contexts | шъхьэ, пшъхьэ, шъхьэм |
|
| 453 |
+
| `дыгэ` | 1.82x | 14 contexts | адыгэ, адыгэм, иадыгэ |
|
| 454 |
+
| `эхэр` | 1.56x | 21 contexts | бэхэр, усэхэр, ынэхэр |
|
| 455 |
+
| `шъхь` | 1.49x | 24 contexts | шъхьэ, пшъхьэ, шъхьэм |
|
| 456 |
+
| `псэу` | 1.57x | 19 contexts | щыпсэу, щэпсэу, сыпсэу |
|
| 457 |
+
| `ыгъо` | 1.56x | 19 contexts | цыгъо, мыгъо, пщыгъо |
|
| 458 |
+
| `гъэх` | 1.65x | 14 contexts | багъэх, хъугъэх, ежагъэх |
|
| 459 |
+
|
| 460 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 461 |
+
|
| 462 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 463 |
+
|
| 464 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 465 |
+
|--------|--------|-----------|----------|
|
| 466 |
+
| `-къ` | `-э` | 96 words | къэлэмымкӏэ, къалэмэ |
|
| 467 |
+
| `-къ` | `-р` | 64 words | къо��, къуаджэхэр |
|
| 468 |
+
| `-къ` | `-м` | 56 words | къалэм, къумбылым |
|
| 469 |
+
| `-къ` | `-эр` | 52 words | къуаджэхэр, къэбархэр |
|
| 470 |
+
| `-зэ` | `-р` | 42 words | зэготхэр, зэхэтхэр |
|
| 471 |
+
| `-зэ` | `-м` | 41 words | зэхэзгъэуцуагъэхэм, зэӏукӏэгъум |
|
| 472 |
+
| `-къ` | `-эм` | 36 words | къалэм, къуаджэхэм |
|
| 473 |
+
| `-зэ` | `-эр` | 34 words | зэготхэр, зэхэтхэр |
|
| 474 |
+
| `-къ` | `-эу` | 34 words | къыхэкӏыгъэу, къэгъэлъэгъонэу |
|
| 475 |
+
| `-зэ` | `-э` | 31 words | зэ, зэригъэфэгъэ |
|
| 476 |
+
|
| 477 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 478 |
+
|
| 479 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 480 |
+
|
| 481 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 482 |
+
|------|-----------------|------------|------|
|
| 483 |
+
| щыпсэухэрэр | **`щыпс-эу-хэр-эр`** | 7.5 | `щыпс` |
|
| 484 |
+
| америкэмрэ | **`америк-эм-рэ`** | 6.0 | `америк` |
|
| 485 |
+
| океанымрэ | **`океан-ым-рэ`** | 6.0 | `океан` |
|
| 486 |
+
| литературэмрэ | **`литератур-эм-рэ`** | 6.0 | `литератур` |
|
| 487 |
+
| бзылъфыгъэмрэ | **`бзылъфыгъ-эм-рэ`** | 6.0 | `бзылъфыгъ` |
|
| 488 |
+
| адыгабзэмрэ | **`адыгабз-эм-рэ`** | 6.0 | `адыгабз` |
|
| 489 |
+
| хыплъыжьымрэ | **`хыплъыжь-ым-рэ`** | 6.0 | `хыплъыжь` |
|
| 490 |
+
| алфавитэу | **`алфавит-эу`** | 4.5 | `алфавит` |
|
| 491 |
+
| цӏыкӏухэр | **`цӏыкӏу-хэр`** | 4.5 | `цӏыкӏу` |
|
| 492 |
+
| исурэтхэр | **`исурэт-хэр`** | 4.5 | `исурэт` |
|
| 493 |
+
| шӏыпӏэхэр | **`шӏыпӏэ-хэр`** | 4.5 | `шӏыпӏэ` |
|
| 494 |
+
| шӏэныгъэм | **`шӏэныгъ-эм`** | 4.5 | `шӏэныгъ` |
|
| 495 |
+
| къыпыщылъ | **`къы-пыщылъ`** | 4.5 | `пыщылъ` |
|
| 496 |
+
| пэблагъэу | **`пэблагъ-эу`** | 4.5 | `пэблагъ` |
|
| 497 |
+
| ишъхъэрэмрэ | **`ишъхъ-эр-эм-рэ`** | 4.5 | `ишъхъ` |
|
| 498 |
+
|
| 499 |
+
### 6.6 Linguistic Interpretation
|
| 500 |
+
|
| 501 |
+
> **Automated Insight:**
|
| 502 |
+
The language ADY appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
|
| 503 |
+
|
| 504 |
+
---
|
| 505 |
+
## 7. Summary & Recommendations
|
| 506 |
|
| 507 |

|
| 508 |
|
|
|
|
| 510 |
|
| 511 |
| Component | Recommended | Rationale |
|
| 512 |
|-----------|-------------|-----------|
|
| 513 |
+
| Tokenizer | **32k BPE** | Best compression (4.23x) |
|
| 514 |
+
| N-gram | **2-gram** | Lowest perplexity (399) |
|
| 515 |
+
| Markov | **Context-4** | Highest predictability (98.7%) |
|
| 516 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 517 |
|
| 518 |
+
|
| 519 |
---
|
| 520 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 521 |
|
|
|
|
| 705 |
author = {Kamali, Omar},
|
| 706 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 707 |
year = {2025},
|
| 708 |
+
doi = {10.5281/zenodo.18073153},
|
| 709 |
+
publisher = {Zenodo},
|
| 710 |
url = {https://huggingface.co/wikilangs}
|
| 711 |
institution = {Omneity Labs}
|
| 712 |
}
|
|
|
|
| 722 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 723 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 724 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 725 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 726 |
---
|
| 727 |
*Generated by Wikilangs Models Pipeline*
|
| 728 |
|
| 729 |
+
*Report Date: 2026-01-03 05:00:02*
|
models/embeddings/monolingual/ady_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79239fb8f1d5516f7259d49637e01b3851134cf4dc232d72d6bbc383171bd360
|
| 3 |
+
size 1025621365
|
models/embeddings/monolingual/ady_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1551
|
| 15 |
}
|
models/embeddings/monolingual/ady_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35a83ab3b148734fe90d463a14bb03ac25aa53bebe1cd930e6ee275b421f2b9e
|
| 3 |
+
size 256430197
|
models/embeddings/monolingual/ady_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1551
|
| 15 |
}
|
models/embeddings/monolingual/ady_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f26b79bc9f27a68c68e56e0b9e83bef6a8d25662bd63c7a490adce062b153229
|
| 3 |
+
size 512827253
|
models/embeddings/monolingual/ady_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 1551
|
| 15 |
}
|
models/subword_markov/ady_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:326d1899bc21c88f5d2ecbb60df90091a3f81877b05f9f3880179e64fc82bc39
|
| 3 |
+
size 35559
|
models/subword_markov/ady_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 410,
|
| 6 |
+
"total_transitions": 461186
|
| 7 |
}
|
models/subword_markov/ady_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:439580e1d85b149b7a4e12434dcacbd8c63ce4f422949f7787d12f51a3b06768
|
| 3 |
+
size 169546
|
models/subword_markov/ady_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 4325,
|
| 6 |
+
"total_transitions": 460515
|
| 7 |
}
|
models/subword_markov/ady_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba32cd485f139de6037badf290db15170159de5ebb63242fabe6473e50963984
|
| 3 |
+
size 554556
|
models/subword_markov/ady_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 24260,
|
| 6 |
+
"total_transitions": 459844
|
| 7 |
}
|
models/subword_markov/ady_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a23a4022efd4fb6c5360771eb3945cadabce7d4e08d9a04895e4535a30c12dad
|
| 3 |
+
size 1240010
|
models/subword_markov/ady_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 72077,
|
| 6 |
+
"total_transitions": 459173
|
| 7 |
}
|
models/subword_ngram/ady_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2744392ac6f30902dc24ef71be21ed3d0027816ff58c51cc117dbe79b60b6eb
|
| 3 |
+
size 26615
|
models/subword_ngram/ady_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_ngrams": 2072,
|
| 6 |
+
"total_ngrams": 461186
|
| 7 |
}
|
models/subword_ngram/ady_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e27920b4a896f7b33778a4da60561fc4bf2c40fe17414d4721a023a815cc6e6
|
| 3 |
+
size 144946
|
models/subword_ngram/ady_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_ngrams": 11614,
|
| 6 |
+
"total_ngrams": 460515
|
| 7 |
}
|
models/subword_ngram/ady_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1189db5bc7c400c2d162eabf55e0ca7ce6b8403c020f3330fe200b437eab55c
|
| 3 |
+
size 467994
|
models/subword_ngram/ady_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_ngrams": 35316,
|
| 6 |
+
"total_ngrams": 459844
|
| 7 |
}
|
models/tokenizer/ady_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa7339e704e163ae3ef399bf56ca2b041b58ad1cead7a66d4fef2204b2af8435
|
| 3 |
+
size 582264
|
models/tokenizer/ady_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ady_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd22631bb665397f8acd6aab07c2522b6ca5fc9532f157143320bbb205558552
|
| 3 |
+
size 924924
|
models/tokenizer/ady_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ady_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a4cd8210cf36092a1e5cc2950c6a2e334677c7d204476c1e9ac6f464fda33e5
|
| 3 |
+
size 396510
|
models/tokenizer/ady_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/ady_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0394f3c6c2f9871c8756de87f7c0ab00cba32facf111d0c2027f0844c932241b
|
| 3 |
+
size 124070
|
models/vocabulary/ady_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "ady",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "ady",
|
| 3 |
+
"vocabulary_size": 7032,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.37416908841901325,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.21755686942579416,
|
| 9 |
+
"top_1000": 0.4501954103617597,
|
| 10 |
+
"top_5000": 0.6754016768547283,
|
| 11 |
+
"top_10000": 0.7928483147944015
|
| 12 |
},
|
| 13 |
+
"hapax_count": 15371,
|
| 14 |
+
"hapax_ratio": 0.6861134669463911,
|
| 15 |
+
"total_documents": 671
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/ady_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e529d92df652217192b1a53b43d340b1b2d134ff78b718c2331e8296f5e8a183
|
| 3 |
+
size 772451
|
models/word_markov/ady_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 22306,
|
| 6 |
+
"total_transitions": 59203
|
| 7 |
}
|
models/word_markov/ady_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:949fea0fcff222936353244ef6edc60951c50ac50290dc3b857a31ce73658051
|
| 3 |
+
size 1310186
|
models/word_markov/ady_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 46305,
|
| 6 |
+
"total_transitions": 58532
|
| 7 |
}
|
models/word_markov/ady_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0edd29aaf52ac72ad56819e317223cc422f1de2fd93feb950a6fd0c9d7772f20
|
| 3 |
+
size 1585798
|
models/word_markov/ady_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 51243,
|
| 6 |
+
"total_transitions": 57861
|
| 7 |
}
|
models/word_markov/ady_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3e2c27ffec6ab82c94cdc5ee7375d9e46705feb8849d5c1a1b44f49a1934653
|
| 3 |
+
size 1845825
|
models/word_markov/ady_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_contexts": 52387,
|
| 6 |
+
"total_transitions": 57190
|
| 7 |
}
|
models/word_ngram/ady_2gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:844f6778f268cd035e5b1a16fd38a5a6039c763c63cfaee2c5da98c36decbf9d
|
| 3 |
+
size 15361
|
models/word_ngram/ady_2gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_ngrams": 593,
|
| 6 |
+
"total_ngrams": 59203
|
| 7 |
}
|
models/word_ngram/ady_3gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d7eb072c0df1857a28734446befa43d91f7bec4523744835d1f96b7ef4ea52f
|
| 3 |
+
size 26381
|
models/word_ngram/ady_3gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_ngrams": 922,
|
| 6 |
+
"total_ngrams": 58532
|
| 7 |
}
|
models/word_ngram/ady_4gram_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:554ec1d49a6c147c67f6b66d5ec37c9b9ad812cce293118aea436980088ed1b3
|
| 3 |
+
size 106335
|
models/word_ngram/ady_4gram_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ady",
|
| 5 |
+
"unique_ngrams": 3264,
|
| 6 |
+
"total_ngrams": 57861
|
| 7 |
}
|
visualizations/embedding_isotropy.png
CHANGED
|
|
visualizations/embedding_norms.png
CHANGED
|
|
visualizations/embedding_similarity.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
visualizations/markov_branching.png
CHANGED
|
|
visualizations/markov_contexts.png
CHANGED
|
|
visualizations/markov_entropy.png
CHANGED
|
|