|
# ๐ก **LWM: Large Wireless Model** |
|
|
|
**[๐ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/lwm-interactive-demo)** |
|
|
|
Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM. |
|
|
|
--- |
|
|
|
## ๐ **How to Use** |
|
|
|
### 1. **Install Conda or Mamba (via Miniforge)** |
|
|
|
First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages. |
|
|
|
#### **Option A: Install Conda** |
|
|
|
If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**. |
|
|
|
- **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution). |
|
- **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html). |
|
|
|
#### **Option B: Install Mamba (via Miniforge)** |
|
|
|
**Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**. |
|
|
|
- **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest). |
|
|
|
After installation, you can use conda for environment management. |
|
|
|
--- |
|
|
|
### 2. **Create a New Environment** |
|
|
|
Once you have Conda (https://conda.io/projects/conda/en/latest/user-guide/install/index.html), follow these steps to create a new environment and install the necessary packages. |
|
|
|
#### **Step 1: Create a new environment** |
|
|
|
You can create a new environment called `lwm_env`: |
|
|
|
```bash |
|
conda create -n lwm_env |
|
``` |
|
|
|
#### **Step 2: Activate the environment** |
|
|
|
Activate the environment you just created: |
|
|
|
```bash |
|
conda activate lwm_env |
|
``` |
|
|
|
--- |
|
|
|
#### **Step 3: Install Required Packages** |
|
|
|
Install the necessary packages inside your new environment. |
|
|
|
# Install CUDA-enabled Pytorch |
|
```bash |
|
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia |
|
``` |
|
# Install other required packages from conda-forge |
|
```bash |
|
conda install python numpy pandas matplotlib tqdm -c conda-forge |
|
``` |
|
# Install DeepMIMOv3 with pip |
|
```bash |
|
pip install DeepMIMOv3 |
|
``` |
|
|
|
--- |
|
|
|
### 3. **Required Functions to Clone Datasets** |
|
|
|
The following functions will help you clone specific dataset scenarios: |
|
|
|
```python |
|
import subprocess |
|
import os |
|
|
|
# Function to clone a specific dataset scenario folder |
|
def clone_dataset_scenario(scenario_name, repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"): |
|
# Create the scenarios directory if it doesn't exist |
|
scenarios_path = os.path.join(model_repo_dir, scenarios_dir) |
|
if not os.path.exists(scenarios_path): |
|
os.makedirs(scenarios_path) |
|
|
|
scenario_path = os.path.join(scenarios_path, scenario_name) |
|
|
|
# Initialize sparse checkout for the dataset repository |
|
if not os.path.exists(os.path.join(scenarios_path, ".git")): |
|
print(f"Initializing sparse checkout in {scenarios_path}...") |
|
subprocess.run(["git", "clone", "--sparse", repo_url, "."], cwd=scenarios_path, check=True) |
|
subprocess.run(["git", "sparse-checkout", "init", "--cone"], cwd=scenarios_path, check=True) |
|
subprocess.run(["git", "lfs", "install"], cwd=scenarios_path, check=True) # Install Git LFS if needed |
|
|
|
# Add the requested scenario folder to sparse checkout |
|
print(f"Adding {scenario_name} to sparse checkout...") |
|
subprocess.run(["git", "sparse-checkout", "add", scenario_name], cwd=scenarios_path, check=True) |
|
|
|
# Pull large files if needed (using Git LFS) |
|
subprocess.run(["git", "lfs", "pull"], cwd=scenarios_path, check=True) |
|
|
|
print(f"Successfully cloned {scenario_name} into {scenarios_path}.") |
|
|
|
# Function to clone multiple dataset scenarios |
|
def clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir): |
|
for scenario_name in selected_scenario_names: |
|
clone_dataset_scenario(scenario_name, dataset_repo_url, model_repo_dir) |
|
``` |
|
|
|
--- |
|
|
|
### 4. **Clone the Model** |
|
|
|
Next, you need to clone the **LWM** model from its Git repository. This will download all the necessary files to your local system. |
|
|
|
```bash |
|
|
|
# Step 1: Clone the model repository (if not already cloned) |
|
model_repo_url = "https://huggingface.co/sadjadalikhani/lwm" |
|
model_repo_dir = "./LWM" |
|
|
|
if not os.path.exists(model_repo_dir): |
|
print(f"Cloning model repository from {model_repo_url}...") |
|
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True) |
|
``` |
|
|
|
--- |
|
|
|
### 5. **Clone the Desired Datasets** |
|
|
|
Before proceeding with tokenization and data processing, the **DeepMIMO** datasetโor any dataset generated using the operational settings outlined belowโmust first be loaded. The table below provides a list of available datasets and their respective links for further details: |
|
|
|
๐ **Dataset Overview** |
|
|
|
| ๐ **Dataset** | ๐๏ธ **City** | ๐ฅ **Number of Users** | ๐ **DeepMIMO Page** | |
|
|----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------| |
|
| Dataset 0 | ๐ Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) | |
|
| Dataset 1 | ๐๏ธ Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) | |
|
| Dataset 2 | ๐ Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) | |
|
| Dataset 3 | ๐ Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) | |
|
| Dataset 4 | ๐ Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) | |
|
| Dataset 5 | ๐
San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) | |
|
|
|
It is important to note that these six datasets were **not** used during the pre-training of the LWM model, and the high-quality embeddings produced are a testament to LWMโs robust generalization capabilities rather than overfitting. |
|
|
|
#### **Operational Settings**: |
|
- **Antennas at BS**: 32 |
|
- **Antennas at UEs**: 1 |
|
- **Subcarriers**: 32 |
|
- **Paths**: 20 |
|
|
|
```python |
|
# Step 2: Clone specific dataset scenario folder(s) inside the "scenarios" folder |
|
dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo |
|
scenario_names = np.array(["city_18_denver", |
|
"city_15_indianapolis", |
|
"city_19_oklahoma", |
|
"city_12_fortworth", |
|
"city_11_santaclara", |
|
"city_7_sandiego"] |
|
) |
|
|
|
# Choose the desired scenario or secanrios (if you need the combined scenarios as a larger and more diverse scenario.). |
|
scenario_idxs = np.array([0,1,2,3,4,5,6]) |
|
selected_scenario_names = scenario_names[scenario_idxs] |
|
|
|
# Clone the requested scenario folders (this will clone every time) |
|
clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir) |
|
``` |
|
|
|
--- |
|
|
|
### 6. **Change the working directory to LWM folder** |
|
```bash |
|
if os.path.exists(model_repo_dir): |
|
os.chdir(model_repo_dir) |
|
print(f"Changed working directory to {os.getcwd()}") |
|
else: |
|
print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.") |
|
``` |
|
|
|
--- |
|
|
|
### 7. **Tokenize and Load the Model** |
|
|
|
```python |
|
from input_preprocess import tokenizer |
|
from lwm_model import lwm |
|
import torch |
|
|
|
preprocessed_chs = tokenizer(selected_scenario_names=selected_scenario_names, |
|
manual_data=None, |
|
gen_raw=True) |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print(f"Loading the LWM model on {device}...") |
|
model = lwm.from_pretrained(device=device) |
|
``` |
|
|
|
--- |
|
|
|
### 8. **Perform Inference** |
|
```python |
|
from inference import lwm_inference, create_raw_dataset |
|
input_types = ['cls_emb', 'channel_emb', 'raw'] |
|
selected_input_type = input_types[0] |
|
if selected_input_type in ['cls_emb', 'channel_emb']: |
|
dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device) |
|
else: |
|
dataset = create_raw_dataset(preprocessed_chs, device) |
|
``` |
|
|
|
--- |
|
|
|
### 9. **Explore the Interactive Demo** |
|
|
|
If you'd like to explore **LWM** interactively, check out the demo hosted on Hugging Face Spaces: |
|
[**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo) |
|
|
|
--- |
|
|
|
Now youโre ready to dive into the world of **Large Wireless Model (LWM)**, process wireless communication datasets, and extract high-quality embeddings to fuel your research or application! |