metadata
language:
- ru
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Whisper Base Ru
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16.0
type: mozilla-foundation/common_voice_16_0
config: ru
split: None
args: 'config: ru, split: test'
metrics:
- name: Wer
type: wer
value: 131.35769718547476
Whisper Base Ru
This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2080
- Wer: 131.3577
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2013 | 0.61 | 1000 | 0.2301 | 130.4397 |
0.0753 | 1.21 | 2000 | 0.2159 | 131.7603 |
0.0902 | 1.82 | 3000 | 0.2046 | 129.7846 |
0.0394 | 2.43 | 4000 | 0.2080 | 131.3577 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.1