metadata
license: mit
language:
- fr
- zh
- fa
- ky
- ru
- lt
- uz
- en
- pt
- bg
- th
- pl
- ur
- sw
- tr
- es
- ar
- it
- hi
- de
- el
- nl
- vi
- ja
pipeline_tag: text-classification
tags:
- pytorch
- mt0
language identification mt0
This model is a fine-tuned version of encoder from bigscience/mt0-small on the Language Identification dataset as well as some private data.
Limitations
Currently, it supports the following 20 languages:
arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), kyrgyz (ky), uzbek (uz), persian (fa), lithuanian (lt), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)
Inference
First you will need to have this library installed
pip install bert-for-sequence classfication
from bert_clf import EncoderCLF
model = EncoderCLF("whitefoxredhell/language_identification")
text = "London is the capital of Great Britain"
model.predict(text)
# 'en'
model.predict_proba(text)
# {
# 'fr': 3.022890814463608e-05,
# 'zh': 2.328997834410984e-05,
# 'fa': 5.344639430404641e-05,
# 'ky': 3.5296812711749226e-05,
# 'ru': 2.3277720174519345e-05,
# 'lt': 0.00021786204888485372,
# 'uz': 3.461417873040773e-05,
# 'en': 0.999232292175293,
# 'pt': 1.2590448022820055e-05,
# 'bg': 1.5775613064761274e-05,
# 'th': 9.429674719285686e-06,
# 'pl': 2.4624938305350952e-05,
# 'ur': 3.982995986007154e-05,
# 'sw': 4.8921840061666444e-05,
# 'tr': 2.6844283638638444e-05,
# 'es': 2.325668538105674e-05,
# 'ar': 2.4103366740746424e-05,
# 'it': 1.8611381165101193e-05,
# 'hi': 1.4575023669749498e-05,
# 'de': 2.210299498983659e-05,
# 'el': 1.3880739061278291e-05,
# 'nl': 2.767637124634348e-05,
# 'vi': 1.3878144272894133e-05,
# 'ja': 1.3629408385895658e-05
# }