whisper-small-ar2 / README.md
whitefox123's picture
End of training
6ec1c13 verified
|
raw
history blame
1.95 kB
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - whitefox123/tashkeel
metrics:
  - wer
model-index:
  - name: Whisper small - tuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: CLARtts
          type: whitefox123/tashkeel
          config: default
          split: None
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 24.36036036036036

Whisper small - tuned

This model is a fine-tuned version of openai/whisper-small on the CLARtts dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1638
  • Wer: 24.3604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3125
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1186 1.6 1000 0.1555 26.6667
0.0374 3.2 2000 0.1500 24.3964
0.0222 4.8 3000 0.1638 24.3604

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.17.0
  • Tokenizers 0.15.2