whisper-ar-15 / README.md
whitefox123's picture
End of training
bcf898b verified
|
raw
history blame
2.14 kB
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large Ar - Rami
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: default
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 103.42342342342343

Whisper Large Ar - Rami

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1317
  • Wer: 103.4234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2845 0.16 100 0.2153 30.0541
0.1417 0.32 200 0.1466 53.8018
0.1446 0.48 300 0.1388 64.7568
0.1326 0.64 400 0.1371 128.7568
0.13 0.8 500 0.1317 103.4234

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2