English
self-supervised learning
barlow-twins
6 papers
mix-bt / main_imagenet.py
wgcban's picture
Upload 98 files
803ef9e
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import argparse
import json
import math
import os
import random
import signal
import subprocess
import sys
import time
import numpy as np
import wandb
from PIL import Image, ImageOps, ImageFilter
from torch import nn, optim
import torch
import torchvision
import torchvision.transforms as transforms
parser = argparse.ArgumentParser(description='Barlow Twins Training')
parser.add_argument('data', type=Path, metavar='DIR',
help='path to dataset')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loader workers')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=512, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--learning-rate-weights', default=0.2, type=float, metavar='LR',
help='base learning rate for weights')
parser.add_argument('--learning-rate-biases', default=0.0048, type=float, metavar='LR',
help='base learning rate for biases and batch norm parameters')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
help='weight decay')
parser.add_argument('--lambd', default=0.0051, type=float, metavar='L',
help='weight on off-diagonal terms')
parser.add_argument('--projector', default='8192-8192-8192', type=str,
metavar='MLP', help='projector MLP')
parser.add_argument('--print-freq', default=1, type=int, metavar='N',
help='print frequency')
parser.add_argument('--checkpoint-dir', default='/mnt/store/wbandar1/projects/ssl-aug-artifacts/', type=Path,
metavar='DIR', help='path to checkpoint directory')
parser.add_argument('--is_mixup', default='false', type=str,
metavar='L', help='mixup regularization', choices=['true', 'false'])
parser.add_argument('--lambda_mixup', default=0.1, type=float, metavar='L',
help='Hyperparamter for the regularization loss')
def main():
args = parser.parse_args()
args.is_mixup = args.is_mixup.lower() == 'true'
args.ngpus_per_node = torch.cuda.device_count()
run = wandb.init(project="Barlow-Twins-MixUp-ImageNet", config=args, dir='/mnt/store/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
run_id = wandb.run.id
args.checkpoint_dir=Path(os.path.join(args.checkpoint_dir, run_id))
if 'SLURM_JOB_ID' in os.environ:
# single-node and multi-node distributed training on SLURM cluster
# requeue job on SLURM preemption
signal.signal(signal.SIGUSR1, handle_sigusr1)
signal.signal(signal.SIGTERM, handle_sigterm)
# find a common host name on all nodes
# assume scontrol returns hosts in the same order on all nodes
cmd = 'scontrol show hostnames ' + os.getenv('SLURM_JOB_NODELIST')
stdout = subprocess.check_output(cmd.split())
host_name = stdout.decode().splitlines()[0]
args.rank = int(os.getenv('SLURM_NODEID')) * args.ngpus_per_node
args.world_size = int(os.getenv('SLURM_NNODES')) * args.ngpus_per_node
args.dist_url = f'tcp://{host_name}:58472'
else:
# single-node distributed training
args.rank = 0
args.dist_url = 'tcp://localhost:58472'
args.world_size = args.ngpus_per_node
torch.multiprocessing.spawn(main_worker, (args,run,), args.ngpus_per_node)
wandb.finish()
def main_worker(gpu, args, run):
args.rank += gpu
torch.distributed.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.rank == 0:
args.checkpoint_dir.mkdir(parents=True, exist_ok=True)
stats_file = open(args.checkpoint_dir / 'stats.txt', 'a', buffering=1)
print(' '.join(sys.argv))
print(' '.join(sys.argv), file=stats_file)
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
model = BarlowTwins(args).cuda(gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
param_weights = []
param_biases = []
for param in model.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
parameters = [{'params': param_weights}, {'params': param_biases}]
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
optimizer = LARS(parameters, lr=0, weight_decay=args.weight_decay,
weight_decay_filter=True,
lars_adaptation_filter=True)
# automatically resume from checkpoint if it exists
if (args.checkpoint_dir / 'checkpoint.pth').is_file():
ckpt = torch.load(args.checkpoint_dir / 'checkpoint.pth',
map_location='cpu')
start_epoch = ckpt['epoch']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
else:
start_epoch = 0
dataset = torchvision.datasets.ImageFolder(args.data / 'train', Transform())
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
assert args.batch_size % args.world_size == 0
per_device_batch_size = args.batch_size // args.world_size
loader = torch.utils.data.DataLoader(
dataset, batch_size=per_device_batch_size, num_workers=args.workers,
pin_memory=True, sampler=sampler)
start_time = time.time()
scaler = torch.cuda.amp.GradScaler(growth_interval=100, enabled=True)
for epoch in range(start_epoch, args.epochs):
sampler.set_epoch(epoch)
for step, ((y1, y2), _) in enumerate(loader, start=epoch * len(loader)):
y1 = y1.cuda(gpu, non_blocking=True)
y2 = y2.cuda(gpu, non_blocking=True)
adjust_learning_rate(args, optimizer, loader, step)
mixup_loss_scale = adjust_mixup_scale(loader, step, args.lambda_mixup)
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=True):
loss_bt, loss_reg = model(y1, y2, args.is_mixup)
loss_regs = mixup_loss_scale * loss_reg
loss = loss_bt + loss_regs
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
if step % args.print_freq == 0:
if args.rank == 0:
stats = dict(epoch=epoch, step=step,
lr_weights=optimizer.param_groups[0]['lr'],
lr_biases=optimizer.param_groups[1]['lr'],
loss=loss.item(),
time=int(time.time() - start_time))
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
if args.is_mixup:
run.log(
{
"epoch": epoch,
"step": step,
"lr_weights": optimizer.param_groups[0]['lr'],
"lr_biases": optimizer.param_groups[1]['lr'],
"loss": loss.item(),
"loss_bt": loss_bt.item(),
"loss_reg(unscaled)": loss_reg.item(),
"reg_scale": mixup_loss_scale,
"loss_reg(scaled)": loss_regs.item(),
"time": int(time.time() - start_time)}
)
else:
run.log(
{
"epoch": epoch,
"step": step,
"lr_weights": optimizer.param_groups[0]['lr'],
"lr_biases": optimizer.param_groups[1]['lr'],
"loss": loss.item(),
"loss_bt": loss.item(),
"loss_reg(unscaled)": 0.,
"reg_scale": 0.,
"loss_reg(scaled)": 0.,
"time": int(time.time() - start_time)}
)
if args.rank == 0:
# save checkpoint
state = dict(epoch=epoch + 1, model=model.state_dict(),
optimizer=optimizer.state_dict())
torch.save(state, args.checkpoint_dir / 'checkpoint.pth')
if args.rank == 0:
# save final model
print("Saving final model ...")
torch.save(model.module.backbone.state_dict(),
args.checkpoint_dir / 'resnet50.pth')
print("Finished saving final model ...")
def adjust_learning_rate(args, optimizer, loader, step):
max_steps = args.epochs * len(loader)
warmup_steps = 10 * len(loader)
base_lr = args.batch_size / 256
if step < warmup_steps:
lr = base_lr * step / warmup_steps
else:
step -= warmup_steps
max_steps -= warmup_steps
q = 0.5 * (1 + math.cos(math.pi * step / max_steps))
end_lr = base_lr * 0.001
lr = base_lr * q + end_lr * (1 - q)
optimizer.param_groups[0]['lr'] = lr * args.learning_rate_weights
optimizer.param_groups[1]['lr'] = lr * args.learning_rate_biases
def adjust_mixup_scale(loader, step, lambda_mixup):
warmup_steps = 10 * len(loader)
if step < warmup_steps:
return lambda_mixup * step / warmup_steps
else:
return lambda_mixup
def handle_sigusr1(signum, frame):
os.system(f'scontrol requeue {os.getenv("SLURM_JOB_ID")}')
exit()
def handle_sigterm(signum, frame):
pass
def off_diagonal(x):
# return a flattened view of the off-diagonal elements of a square matrix
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
class BarlowTwins(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.backbone = torchvision.models.resnet50(zero_init_residual=True)
self.backbone.fc = nn.Identity()
# projector
sizes = [2048] + list(map(int, args.projector.split('-')))
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
# normalization layer for the representations z1 and z2
# self.bn = nn.BatchNorm1d(sizes[-1], affine=False)
# def forward(self, y1, y2):
# z1 = self.projector(self.backbone(y1))
# z2 = self.projector(self.backbone(y2))
# # empirical cross-correlation matrix
# c = self.bn(z1).T @ self.bn(z2)
# # sum the cross-correlation matrix between all gpus
# c.div_(self.args.batch_size)
# torch.distributed.all_reduce(c)
# on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
# off_diag = off_diagonal(c).pow_(2).sum()
# loss = on_diag + self.args.lambd * off_diag
# return loss
def forward(self, y1, y2, is_mixup):
batch_size = y1.shape[0]
### original barlow twins ###
z1 = self.projector(self.backbone(y1))
z2 = self.projector(self.backbone(y2))
# normilization
z1 = (z1 - z1.mean(dim=0)) / z1.std(dim=0)
z2 = (z2 - z2.mean(dim=0)) / z2.std(dim=0)
# empirical cross-correlation matrix
c = z1.T @ z2
# sum the cross-correlation matrix between all gpus
c.div_(self.args.batch_size)
torch.distributed.all_reduce(c)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + self.args.lambd * off_diag
if is_mixup:
##############################################
### mixup regularization: Implementation 1 ###
##############################################
# index = torch.randperm(batch_size).cuda(non_blocking=True)
# alpha = np.random.beta(1.0, 1.0)
# ym = alpha * y1 + (1. - alpha) * y2[index, :]
# zm = self.projector(self.backbone(ym))
# # normilization
# zm = (zm - zm.mean(dim=0)) / zm.std(dim=0)
# # cc
# cc_m_1 = zm.T @ z1
# cc_m_1.div_(batch_size)
# cc_m_1_gt = alpha*(z1.T @ z1) + (1.-alpha)*(z2[index,:].T @ z1)
# cc_m_1_gt.div_(batch_size)
# cc_m_2 = zm.T @ z2
# cc_m_2.div_(batch_size)
# cc_m_2_gt = alpha*(z2.T @ z2) + (1.-alpha)*(z2[index,:].T @ z2)
# cc_m_2_gt.div_(batch_size)
# # mixup reg. loss
# lossm = 0.5*self.args.lambd*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
##############################################
### mixup regularization: Implementation 2 ###
##############################################
index = torch.randperm(batch_size).cuda(non_blocking=True)
alpha = np.random.beta(1.0, 1.0)
ym = alpha * y1 + (1. - alpha) * y2[index, :]
zm = self.projector(self.backbone(ym))
# normilization
zm = (zm - zm.mean(dim=0)) / zm.std(dim=0)
# cc
cc_m_1 = zm.T @ z1
cc_m_1.div_(self.args.batch_size)
cc_m_1_gt = alpha*(z1.T @ z1) + (1.-alpha)*(z2[index,:].T @ z1)
cc_m_1_gt.div_(self.args.batch_size)
cc_m_2 = zm.T @ z2
cc_m_2.div_(self.args.batch_size)
cc_m_2_gt = alpha*(z2.T @ z2) + (1.-alpha)*(z2[index,:].T @ z2)
cc_m_2_gt.div_(self.args.batch_size)
# gathering all cc
torch.distributed.all_reduce(cc_m_1)
torch.distributed.all_reduce(cc_m_1_gt)
torch.distributed.all_reduce(cc_m_2)
torch.distributed.all_reduce(cc_m_2_gt)
# mixup reg. loss
lossm = 0.5*self.args.lambd*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
else:
lossm = torch.zeros(1)
return loss, lossm
class LARS(optim.Optimizer):
def __init__(self, params, lr, weight_decay=0, momentum=0.9, eta=0.001,
weight_decay_filter=False, lars_adaptation_filter=False):
defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum,
eta=eta, weight_decay_filter=weight_decay_filter,
lars_adaptation_filter=lars_adaptation_filter)
super().__init__(params, defaults)
def exclude_bias_and_norm(self, p):
return p.ndim == 1
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g['params']:
dp = p.grad
if dp is None:
continue
if not g['weight_decay_filter'] or not self.exclude_bias_and_norm(p):
dp = dp.add(p, alpha=g['weight_decay'])
if not g['lars_adaptation_filter'] or not self.exclude_bias_and_norm(p):
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(param_norm > 0.,
torch.where(update_norm > 0,
(g['eta'] * param_norm / update_norm), one), one)
dp = dp.mul(q)
param_state = self.state[p]
if 'mu' not in param_state:
param_state['mu'] = torch.zeros_like(p)
mu = param_state['mu']
mu.mul_(g['momentum']).add_(dp)
p.add_(mu, alpha=-g['lr'])
class GaussianBlur(object):
def __init__(self, p):
self.p = p
def __call__(self, img):
if random.random() < self.p:
sigma = random.random() * 1.9 + 0.1
return img.filter(ImageFilter.GaussianBlur(sigma))
else:
return img
class Solarization(object):
def __init__(self, p):
self.p = p
def __call__(self, img):
if random.random() < self.p:
return ImageOps.solarize(img)
else:
return img
class Transform:
def __init__(self):
self.transform = transforms.Compose([
transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(
[transforms.ColorJitter(brightness=0.4, contrast=0.4,
saturation=0.2, hue=0.1)],
p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=1.0),
Solarization(p=0.0),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
self.transform_prime = transforms.Compose([
transforms.RandomResizedCrop(224, interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(
[transforms.ColorJitter(brightness=0.4, contrast=0.4,
saturation=0.2, hue=0.1)],
p=0.8
),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(p=0.1),
Solarization(p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def __call__(self, x):
y1 = self.transform(x)
y2 = self.transform_prime(x)
return y1, y2
if __name__ == '__main__':
main()