|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Base augmentations operators.""" |
|
|
|
import numpy as np |
|
from PIL import Image, ImageOps, ImageEnhance |
|
|
|
|
|
IMAGE_SIZE = 64 |
|
import torch |
|
from torchvision import transforms |
|
|
|
|
|
def int_parameter(level, maxval): |
|
"""Helper function to scale `val` between 0 and maxval . |
|
|
|
Args: |
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`]. |
|
maxval: Maximum value that the operation can have. This will be scaled to |
|
level/PARAMETER_MAX. |
|
|
|
Returns: |
|
An int that results from scaling `maxval` according to `level`. |
|
""" |
|
return int(level * maxval / 10) |
|
|
|
|
|
def float_parameter(level, maxval): |
|
"""Helper function to scale `val` between 0 and maxval. |
|
|
|
Args: |
|
level: Level of the operation that will be between [0, `PARAMETER_MAX`]. |
|
maxval: Maximum value that the operation can have. This will be scaled to |
|
level/PARAMETER_MAX. |
|
|
|
Returns: |
|
A float that results from scaling `maxval` according to `level`. |
|
""" |
|
return float(level) * maxval / 10. |
|
|
|
|
|
def sample_level(n): |
|
return np.random.uniform(low=0.1, high=n) |
|
|
|
|
|
def autocontrast(pil_img, _): |
|
return ImageOps.autocontrast(pil_img) |
|
|
|
|
|
def equalize(pil_img, _): |
|
return ImageOps.equalize(pil_img) |
|
|
|
|
|
def posterize(pil_img, level): |
|
level = int_parameter(sample_level(level), 4) |
|
return ImageOps.posterize(pil_img, 4 - level) |
|
|
|
|
|
def rotate(pil_img, level): |
|
degrees = int_parameter(sample_level(level), 30) |
|
if np.random.uniform() > 0.5: |
|
degrees = -degrees |
|
return pil_img.rotate(degrees, resample=Image.BILINEAR) |
|
|
|
|
|
def solarize(pil_img, level): |
|
level = int_parameter(sample_level(level), 256) |
|
return ImageOps.solarize(pil_img, 256 - level) |
|
|
|
|
|
def shear_x(pil_img, level): |
|
level = float_parameter(sample_level(level), 0.3) |
|
if np.random.uniform() > 0.5: |
|
level = -level |
|
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), |
|
Image.AFFINE, (1, level, 0, 0, 1, 0), |
|
resample=Image.BILINEAR) |
|
|
|
|
|
def shear_y(pil_img, level): |
|
level = float_parameter(sample_level(level), 0.3) |
|
if np.random.uniform() > 0.5: |
|
level = -level |
|
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), |
|
Image.AFFINE, (1, 0, 0, level, 1, 0), |
|
resample=Image.BILINEAR) |
|
|
|
|
|
def translate_x(pil_img, level): |
|
level = int_parameter(sample_level(level), IMAGE_SIZE / 3) |
|
if np.random.random() > 0.5: |
|
level = -level |
|
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), |
|
Image.AFFINE, (1, 0, level, 0, 1, 0), |
|
resample=Image.BILINEAR) |
|
|
|
|
|
def translate_y(pil_img, level): |
|
level = int_parameter(sample_level(level), IMAGE_SIZE / 3) |
|
if np.random.random() > 0.5: |
|
level = -level |
|
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), |
|
Image.AFFINE, (1, 0, 0, 0, 1, level), |
|
resample=Image.BILINEAR) |
|
|
|
|
|
|
|
def color(pil_img, level): |
|
level = float_parameter(sample_level(level), 1.8) + 0.1 |
|
return ImageEnhance.Color(pil_img).enhance(level) |
|
|
|
|
|
|
|
def contrast(pil_img, level): |
|
level = float_parameter(sample_level(level), 1.8) + 0.1 |
|
return ImageEnhance.Contrast(pil_img).enhance(level) |
|
|
|
|
|
|
|
def brightness(pil_img, level): |
|
level = float_parameter(sample_level(level), 1.8) + 0.1 |
|
return ImageEnhance.Brightness(pil_img).enhance(level) |
|
|
|
|
|
|
|
def sharpness(pil_img, level): |
|
level = float_parameter(sample_level(level), 1.8) + 0.1 |
|
return ImageEnhance.Sharpness(pil_img).enhance(level) |
|
|
|
def random_resized_crop(pil_img, level): |
|
return transforms.RandomResizedCrop(32)(pil_img) |
|
|
|
def random_flip(pil_img, level): |
|
return transforms.RandomHorizontalFlip(p=0.5)(pil_img) |
|
|
|
def grayscale(pil_img, level): |
|
return transforms.Grayscale(num_output_channels=3)(pil_img) |
|
|
|
augmentations = [ |
|
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, |
|
translate_x, translate_y, grayscale |
|
] |
|
|
|
augmentations_all = [ |
|
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, |
|
translate_x, translate_y, color, contrast, brightness, sharpness, grayscale |
|
] |
|
|
|
def aug_tiny(image, preprocess, mixture_width=3, mixture_depth=-1, aug_severity=3): |
|
"""Perform AugMix augmentations and compute mixture. |
|
|
|
Args: |
|
image: PIL.Image input image |
|
preprocess: Preprocessing function which should return a torch tensor. |
|
|
|
Returns: |
|
mixed: Augmented and mixed image. |
|
""" |
|
aug_list = augmentations |
|
|
|
|
|
|
|
ws = np.float32(np.random.dirichlet([1] * mixture_width)) |
|
m = np.float32(np.random.beta(1, 1)) |
|
|
|
mix = torch.zeros_like(preprocess(image)) |
|
for i in range(mixture_width): |
|
image_aug = image.copy() |
|
depth = mixture_depth if mixture_depth > 0 else np.random.randint( |
|
1, 4) |
|
for _ in range(depth): |
|
op = np.random.choice(aug_list) |
|
image_aug = op(image_aug, aug_severity) |
|
|
|
mix += ws[i] * preprocess(image_aug) |
|
|
|
mixed = (1 - m) * preprocess(image) + m * mix |
|
return mixed |