wendys-llc commited on
Commit
47d7b97
·
verified ·
1 Parent(s): 6ad5f2d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +25 -31
README.md CHANGED
@@ -6,31 +6,24 @@ tags:
6
  - pytorch
7
  datasets:
8
  - wendys-llc/chkbx
9
- widget:
10
- - src: https://i.imgur.com/ExampleChecked.jpg
11
- candidate_labels: unchecked, checked
12
- example_title: Checked Box
13
- - src: https://i.imgur.com/ExampleUnchecked.jpg
14
- candidate_labels: unchecked, checked
15
- example_title: Unchecked Box
16
  ---
17
 
18
  # Checkbox Classifier
19
 
20
- Binary classifier for checkbox states (checked/unchecked). Trained on the [wendys-llc/chkbx](https://huggingface.co/datasets/wendys-llc/chkbx) dataset.
21
 
22
- ## Usage
23
 
24
  ```python
25
  from transformers import pipeline
26
- from PIL import Image
27
 
28
  # Load pipeline
29
  classifier = pipeline("image-classification",
30
  model="wendys-llc/checkbox-classifier",
31
  trust_remote_code=True)
32
 
33
- # Classify an image
 
34
  image = Image.open("checkbox.jpg")
35
  result = classifier(image)
36
  print(result)
@@ -38,29 +31,30 @@ print(result)
38
  # {'label': 'checked', 'score': 0.99},
39
  # {'label': 'unchecked', 'score': 0.01}
40
  # ]
41
-
42
- # Get just the top prediction
43
- top_result = classifier(image, top_k=1)
44
- print(f"State: {top_result[0]['label']}")
45
  ```
46
 
47
- ## Model Details
48
-
49
- - **Architecture**: EfficientNetV2-S
50
- - **Input Size**: 128x128 RGB images
51
- - **Training**: Mixed precision on A100 GPU
52
- - **Validation Accuracy**: 97.1%
53
- - **License**: Apache 2.0
54
 
55
- ## Intended Use
 
 
 
56
 
57
- This model is designed to classify UI checkboxes in screenshots or interface images. It works best on:
58
- - Clear, high-contrast checkbox images
59
- - Standard UI checkboxes (not hand-drawn)
60
- - Images where the checkbox is the main focus
 
61
 
62
- ## Limitations
 
 
 
 
 
 
 
 
 
63
 
64
- - May not work well on hand-drawn checkmarks
65
- - Trained on UI checkboxes, not paper forms
66
- - Best performance when checkbox is clearly visible and not too small
 
6
  - pytorch
7
  datasets:
8
  - wendys-llc/chkbx
 
 
 
 
 
 
 
9
  ---
10
 
11
  # Checkbox Classifier
12
 
13
+ Binary classifier for checkbox states (checked/unchecked).
14
 
15
+ ## Usage with Transformers
16
 
17
  ```python
18
  from transformers import pipeline
 
19
 
20
  # Load pipeline
21
  classifier = pipeline("image-classification",
22
  model="wendys-llc/checkbox-classifier",
23
  trust_remote_code=True)
24
 
25
+ # Predict
26
+ from PIL import Image
27
  image = Image.open("checkbox.jpg")
28
  result = classifier(image)
29
  print(result)
 
31
  # {'label': 'checked', 'score': 0.99},
32
  # {'label': 'unchecked', 'score': 0.01}
33
  # ]
 
 
 
 
34
  ```
35
 
36
+ ## Direct Usage
 
 
 
 
 
 
37
 
38
+ ```python
39
+ from transformers import AutoModelForImageClassification, AutoImageProcessor
40
+ import torch
41
+ from PIL import Image
42
 
43
+ model = AutoModelForImageClassification.from_pretrained(
44
+ "wendys-llc/checkbox-classifier",
45
+ trust_remote_code=True
46
+ )
47
+ processor = AutoImageProcessor.from_pretrained("wendys-llc/checkbox-classifier")
48
 
49
+ image = Image.open("checkbox.jpg")
50
+ inputs = processor(images=image, return_tensors="pt")
51
+
52
+ with torch.no_grad():
53
+ outputs = model(**inputs)
54
+ logits = outputs.logits
55
+ predicted_class = logits.argmax(-1).item()
56
+
57
+ print(model.config.id2label[predicted_class])
58
+ ```
59
 
60
+ ## Accuracy: 97.1%