|
from transformers import PreTrainedModel, PretrainedConfig |
|
import torch.nn as nn |
|
from torchvision.models import efficientnet_v2_s, EfficientNet_V2_S_Weights |
|
|
|
class CheckboxConfig(PretrainedConfig): |
|
model_type = "checkbox-classifier" |
|
|
|
def __init__(self, num_labels=2, dropout_rate=0.3, **kwargs): |
|
super().__init__(num_labels=num_labels, **kwargs) |
|
self.dropout_rate = dropout_rate |
|
|
|
class CheckboxClassifier(PreTrainedModel): |
|
config_class = CheckboxConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.backbone = efficientnet_v2_s(weights=EfficientNet_V2_S_Weights.IMAGENET1K_V1) |
|
num_features = self.backbone.classifier[1].in_features |
|
|
|
self.backbone.classifier = nn.Sequential( |
|
nn.Dropout(config.dropout_rate), |
|
nn.Linear(num_features, 512), |
|
nn.SiLU(inplace=True), |
|
nn.BatchNorm1d(512), |
|
nn.Dropout(config.dropout_rate), |
|
nn.Linear(512, 256), |
|
nn.SiLU(inplace=True), |
|
nn.BatchNorm1d(256), |
|
nn.Dropout(config.dropout_rate/2), |
|
nn.Linear(256, config.num_labels) |
|
) |
|
|
|
def forward(self, pixel_values): |
|
outputs = self.backbone(pixel_values) |
|
return {"logits": outputs} |
|
|