welsachy's picture
End of training
b1b38bb verified
metadata
license: cc-by-nc-4.0
base_model: mental/mental-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: mental-roberta-base-finetuned-depression
    results: []

mental-roberta-base-finetuned-depression

This model is a fine-tuned version of mental/mental-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6567
  • Precision: 0.8863
  • Recall: 0.9168
  • F1: 0.8996
  • Accuracy: 0.9115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 469 0.3852 0.7878 0.8253 0.7958 0.8667
0.5249 2.0 938 0.4720 0.8778 0.8722 0.8662 0.8913
0.2598 3.0 1407 0.5459 0.8975 0.8791 0.8865 0.8977
0.1624 4.0 1876 0.5022 0.9004 0.8979 0.8976 0.9072
0.1036 5.0 2345 0.6257 0.8910 0.8968 0.8931 0.9009
0.0668 6.0 2814 0.6531 0.9145 0.8927 0.9026 0.9104
0.0539 7.0 3283 0.6209 0.8552 0.9115 0.8802 0.8945
0.057 8.0 3752 0.6567 0.8863 0.9168 0.8996 0.9115
0.0523 9.0 4221 0.7184 0.9067 0.8984 0.8993 0.9083
0.0354 10.0 4690 0.7112 0.8874 0.9014 0.8914 0.9072
0.0268 11.0 5159 0.7168 0.8996 0.9012 0.8979 0.9083
0.0297 12.0 5628 0.7499 0.8667 0.9096 0.8847 0.9030
0.0242 13.0 6097 0.7554 0.8946 0.9014 0.8955 0.9072
0.0238 14.0 6566 0.7990 0.8909 0.9014 0.8934 0.9072
0.0178 15.0 7035 0.8298 0.8965 0.8933 0.8925 0.9051
0.0226 16.0 7504 0.8428 0.9099 0.8890 0.8973 0.9062
0.0226 17.0 7973 0.8490 0.8742 0.8983 0.8816 0.9041
0.0183 18.0 8442 0.8148 0.8940 0.8965 0.8930 0.9072
0.0188 19.0 8911 0.8146 0.8927 0.8960 0.8921 0.9062
0.015 20.0 9380 0.8216 0.8927 0.8960 0.8921 0.9062

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1