welsachy's picture
End of training
95b1ba3 verified
metadata
license: cc-by-nc-4.0
base_model: mental/mental-bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: mental-bert-base-uncased-finetuned-depression
    results: []

mental-bert-base-uncased-finetuned-depression

This model is a fine-tuned version of mental/mental-bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5358
  • Precision: 0.8986
  • Recall: 0.8885
  • F1: 0.8933
  • Accuracy: 0.9158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 469 0.3929 0.8744 0.8346 0.8516 0.8849
0.4726 2.0 938 0.4405 0.9052 0.8359 0.8660 0.8955
0.2165 3.0 1407 0.4594 0.8627 0.8435 0.8515 0.8891
0.1263 4.0 1876 0.5213 0.9012 0.8781 0.8886 0.9094
0.0719 5.0 2345 0.4879 0.9036 0.8694 0.8851 0.9083
0.0471 6.0 2814 0.5628 0.9185 0.8639 0.8880 0.9104
0.0431 7.0 3283 0.5592 0.8980 0.8731 0.8846 0.9104
0.0402 8.0 3752 0.5948 0.9166 0.8591 0.8848 0.9094
0.0348 9.0 4221 0.5358 0.8986 0.8885 0.8933 0.9158
0.0276 10.0 4690 0.6361 0.9116 0.8619 0.8843 0.9094
0.0281 11.0 5159 0.6535 0.9095 0.8726 0.8897 0.9147
0.029 12.0 5628 0.6776 0.9098 0.8673 0.8868 0.9136
0.0188 13.0 6097 0.6940 0.9072 0.8629 0.8829 0.9072
0.0215 14.0 6566 0.7022 0.9168 0.8606 0.8856 0.9115
0.0184 15.0 7035 0.6996 0.9027 0.8687 0.8846 0.9126
0.0204 16.0 7504 0.6990 0.9063 0.8687 0.8861 0.9126
0.0204 17.0 7973 0.7268 0.9103 0.8677 0.8871 0.9115
0.0185 18.0 8442 0.7210 0.9066 0.8766 0.8907 0.9147
0.0181 19.0 8911 0.7346 0.9096 0.8732 0.8902 0.9147
0.0151 20.0 9380 0.7363 0.9090 0.8720 0.8892 0.9136

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1