Text Generation
Transformers
Chinese
llama
weiren119 commited on
Commit
7918939
·
1 Parent(s): 4be4ab7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -86
README.md CHANGED
@@ -16,26 +16,88 @@ quantized_by: weiren119
16
  <!-- header start -->
17
  <!-- header end -->
18
 
19
- # Taiwan-LLaMa-v1.0 - GGML
20
  - Model creator: [Yen-Ting Lin](https://huggingface.co/yentinglin)
21
  - Original model: [Language Models for Taiwanese Culture v1.0](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0)
22
 
23
  ## Description
24
 
25
- This repo contains GGML format model files for [Yen-Ting Lin's Language Models for Taiwanese Culture v1.0](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0).
 
26
 
27
- They are known to work with:
28
- * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
29
 
30
- ...and probably work with these too, but I have not tested perssonally:
31
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
32
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later.
33
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later.
 
 
34
 
35
- ## Repositories available
36
 
37
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/audreyt/Taiwan-LLaMa-v1.0-GGML)
38
- * [Yen-Ting Lin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
 
41
  <!-- footer start -->
@@ -205,79 +267,4 @@ The data included in this project were generated using OpenAI's models and are s
205
  ## Acknowledgements
206
 
207
  We thank [Meta LLaMA team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) for their open-source efforts in democratizing large language models.
208
- ---
209
- ## Intro
210
 
211
- - The 4bits-GQTQ model was converted from [Taiwan-LLaMa-v1.0 13b](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0) by the package [auto-gptq](https://github.com/PanQiWei/AutoGPTQ)
212
-
213
- ## How to use gptq model pyhton code
214
- - Install gptq package: `pip install auto-gptq`
215
- - Here is the example code
216
- ```
217
- from transformers import AutoTokenizer,TextStreamer,TextIteratorStreamer
218
- from auto_gptq import AutoGPTQForCausalLM
219
-
220
-
221
- class TaiwanLLaMaGPTQ:
222
- def __init__(self, model_dir):
223
- self.tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=True)
224
- self.model = AutoGPTQForCausalLM.from_quantized(model_dir,
225
- trust_remote_code=True,
226
- use_safetensors=True,
227
- device_map="auto",
228
- use_triton=False,
229
- strict=False)
230
- self.chat_history = []
231
- self.system_prompt = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
232
-
233
- If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
234
-
235
- self.streamer = TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
236
- self.thread_streamer = TextIteratorStreamer(self.tokenizer, skip_special_tokens=True)
237
- def get_prompt(self, message: str, chat_history: list[tuple[str, str]]) -> str:
238
- texts = [f'[INST] <<SYS>>\n{self.system_prompt}\n<</SYS>>\n\n']
239
- for user_input, response in chat_history:
240
- texts.append(f'{user_input.strip()} [/INST] {response.strip()} </s><s> [INST] ')
241
- texts.append(f'{message.strip()} [/INST]')
242
- return ''.join(texts)
243
-
244
- def generate(self, message: str):
245
- prompt = self.get_prompt(message, self.chat_history)
246
- tokens = self.tokenizer(prompt, return_tensors='pt').input_ids
247
- generate_ids = self.model.generate(input_ids=tokens.cuda(), max_new_tokens=4096, streamer=self.streamer)
248
- output = self.tokenizer.decode(generate_ids[0, len(tokens[0]):-1]).strip()
249
- self.chat_history.append([message, output])
250
- return output
251
-
252
- def thread_generate(self, message:str):
253
- from threading import Thread
254
- prompt = self.get_prompt(message, self.chat_history)
255
- inputs = self.tokenizer(prompt, return_tensors="pt")
256
-
257
- generation_kwargs = dict(
258
- inputs=inputs.input_ids.cuda(),
259
- attention_mask=inputs.attention_mask,
260
- temperature=0.1,
261
- max_new_tokens=1024,
262
- streamer=self.thread_streamer,
263
- )
264
-
265
- # Run generation on separate thread to enable response streaming.
266
- thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
267
- thread.start()
268
- for new_text in self.thread_streamer:
269
- yield new_text
270
-
271
- thread.join()
272
-
273
- inferencer = TaiwanLLaMaGPTQ("weiren119/Taiwan-LLaMa-v1.0-4bits-GPTQ")
274
-
275
-
276
- s = ''
277
- while True:
278
- s = input("User: ")
279
- if s != '':
280
- print ('Answer:')
281
- print (inferencer.generate(s))
282
- print ('-'*80)
283
- ```
 
16
  <!-- header start -->
17
  <!-- header end -->
18
 
19
+ # Taiwan-LLaMa-v1.0-GPTQ
20
  - Model creator: [Yen-Ting Lin](https://huggingface.co/yentinglin)
21
  - Original model: [Language Models for Taiwanese Culture v1.0](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0)
22
 
23
  ## Description
24
 
25
+ This repo contains GPTQ format model files for [Yen-Ting Lin's Language Models for Taiwanese Culture v1.0](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0).
26
+ ## Intro
27
 
28
+ - The 4bits-GQTQ model was converted from [Taiwan-LLaMa-v1.0 13b](https://huggingface.co/yentinglin/Taiwan-LLaMa-v1.0) by the package [auto-gptq](https://github.com/PanQiWei/AutoGPTQ)
 
29
 
30
+ ## How to use gptq model pyhton code
31
+ - Install gptq package: `pip install auto-gptq`
32
+ - Here is the example code
33
+ ```
34
+ from transformers import AutoTokenizer,TextStreamer,TextIteratorStreamer
35
+ from auto_gptq import AutoGPTQForCausalLM
36
 
 
37
 
38
+ class TaiwanLLaMaGPTQ:
39
+ def __init__(self, model_dir):
40
+ self.tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=True)
41
+ self.model = AutoGPTQForCausalLM.from_quantized(model_dir,
42
+ trust_remote_code=True,
43
+ use_safetensors=True,
44
+ device_map="auto",
45
+ use_triton=False,
46
+ strict=False)
47
+ self.chat_history = []
48
+ self.system_prompt = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
49
+
50
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
51
+
52
+ self.streamer = TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
53
+ self.thread_streamer = TextIteratorStreamer(self.tokenizer, skip_special_tokens=True)
54
+ def get_prompt(self, message: str, chat_history: list[tuple[str, str]]) -> str:
55
+ texts = [f'[INST] <<SYS>>\n{self.system_prompt}\n<</SYS>>\n\n']
56
+ for user_input, response in chat_history:
57
+ texts.append(f'{user_input.strip()} [/INST] {response.strip()} </s><s> [INST] ')
58
+ texts.append(f'{message.strip()} [/INST]')
59
+ return ''.join(texts)
60
+
61
+ def generate(self, message: str):
62
+ prompt = self.get_prompt(message, self.chat_history)
63
+ tokens = self.tokenizer(prompt, return_tensors='pt').input_ids
64
+ generate_ids = self.model.generate(input_ids=tokens.cuda(), max_new_tokens=4096, streamer=self.streamer)
65
+ output = self.tokenizer.decode(generate_ids[0, len(tokens[0]):-1]).strip()
66
+ self.chat_history.append([message, output])
67
+ return output
68
+
69
+ def thread_generate(self, message:str):
70
+ from threading import Thread
71
+ prompt = self.get_prompt(message, self.chat_history)
72
+ inputs = self.tokenizer(prompt, return_tensors="pt")
73
+
74
+ generation_kwargs = dict(
75
+ inputs=inputs.input_ids.cuda(),
76
+ attention_mask=inputs.attention_mask,
77
+ temperature=0.1,
78
+ max_new_tokens=1024,
79
+ streamer=self.thread_streamer,
80
+ )
81
+
82
+ # Run generation on separate thread to enable response streaming.
83
+ thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
84
+ thread.start()
85
+ for new_text in self.thread_streamer:
86
+ yield new_text
87
+
88
+ thread.join()
89
+
90
+ inferencer = TaiwanLLaMaGPTQ("weiren119/Taiwan-LLaMa-v1.0-4bits-GPTQ")
91
+
92
+
93
+ s = ''
94
+ while True:
95
+ s = input("User: ")
96
+ if s != '':
97
+ print ('Answer:')
98
+ print (inferencer.generate(s))
99
+ print ('-'*80)
100
+ ```
101
 
102
 
103
  <!-- footer start -->
 
267
  ## Acknowledgements
268
 
269
  We thank [Meta LLaMA team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) for their open-source efforts in democratizing large language models.
 
 
270