XLRS_FullDataset / README.md
wavyduck's picture
Update README.md
9bbcffd verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: XLRS_FullDataset
    results: []
datasets:
  - timit-asr/timit_asr
language:
  - en
base_model:
  - facebook/wav2vec2-base
pipeline_tag: automatic-speech-recognition
metrics:
  - wer
library_name: transformers

XLRS_FullDataset

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3057
  • Wer: 0.2697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
4.5696 1.0 500 3.1546 1.0
2.491 2.01 1000 0.8309 0.7872
0.7519 3.01 1500 0.3648 0.4364
0.4704 4.02 2000 0.2998 0.3758
0.3385 5.02 2500 0.2639 0.3439
0.2837 6.02 3000 0.2604 0.3309
0.2233 7.03 3500 0.2734 0.3143
0.1997 8.03 4000 0.2676 0.3121
0.1717 9.04 4500 0.2489 0.2941
0.1558 10.04 5000 0.2777 0.2969
0.1497 11.04 5500 0.2693 0.2890
0.1326 12.05 6000 0.2844 0.2921
0.118 13.05 6500 0.2818 0.2969
0.119 14.06 7000 0.2798 0.2854
0.0991 15.06 7500 0.2765 0.2858
0.108 16.06 8000 0.2904 0.2794
0.0935 17.07 8500 0.2846 0.2773
0.0857 18.07 9000 0.3120 0.2812
0.0928 19.08 9500 0.3073 0.2820
0.0832 20.08 10000 0.2981 0.2808
0.0768 21.08 10500 0.3065 0.2807
0.0768 22.09 11000 0.2960 0.2766
0.0754 23.09 11500 0.3007 0.2783
0.063 24.1 12000 0.2918 0.2739
0.0614 25.1 12500 0.3144 0.2748
0.0628 26.1 13000 0.3074 0.2713
0.0595 27.11 13500 0.3103 0.2695
0.0616 28.11 14000 0.3108 0.2697
0.0587 29.12 14500 0.3057 0.2697

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.5.1+cu121
  • Datasets 1.18.3
  • Tokenizers 0.20.3