warshanks commited on
Commit
a91925b
Β·
verified Β·
1 Parent(s): 26663c6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Menlo/Lucy-128k
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ ---
10
+
11
+ # Lucy: Edgerunning Agentic Web Search on Mobile with a 1.7B model.
12
+
13
+ [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research)
14
+ [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://opensource.org/licenses/Apache-2.0)
15
+
16
+ <div align="center">
17
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/PA6JCiYLPJX_WFO42ClTd.jpeg" width="300" alt="Lucy-128k">
18
+ </div>
19
+
20
+ **Authors:** [Alan Dao](https://scholar.google.com/citations?user=eGWws2UAAAAJ&hl=en), [Bach Vu Dinh](https://scholar.google.com/citations?user=7Lr6hdoAAAAJ&hl=vi), [Alex Nguyen](https://github.com/nguyenhoangthuan99), [Norapat Buppodom](https://scholar.google.com/citations?user=utfEThsAAAAJ&hl=th&authuser=1)
21
+
22
+
23
+ ![image/gif](lucy_demo.gif)
24
+
25
+
26
+ ## Overview
27
+
28
+ Lucy is a compact but capable 1.7B model focused on agentic web search and lightweight browsing. Built on [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B), Lucy inherits deep research capabilities from larger models while being optimized to run efficiently on mobile devices, even with CPU-only configurations.
29
+
30
+ We achieved this through machine-generated task vectors that optimize thinking processes, smooth reward functions across multiple categories, and pure reinforcement learning without any supervised fine-tuning.
31
+
32
+ ## What Lucy Excels At
33
+
34
+ - **πŸ” Strong Agentic Search**: Powered by MCP-enabled tools (e.g., Serper with Google Search)
35
+ - **🌐 Basic Browsing Capabilities**: Through Crawl4AI (MCP server to be released), Serper,...
36
+ - **πŸ“± Mobile-Optimized**: Lightweight enough to run on CPU or mobile devices with decent speed
37
+ - **🎯 Focused Reasoning**: Machine-generated task vectors optimize thinking processes for search tasks
38
+
39
+ ## Evaluation
40
+ Following the same MCP benchmark methodology used for [Jan-Nano](https://huggingface.co/Menlo/Jan-nano) and [Jan-Nano-128k](https://huggingface.co/Menlo/Jan-nano-128k), Lucy demonstrates impressive performance despite being only a 1.7B model, achieving higher accuracy than DeepSeek-v3 on [SimpleQA](https://openai.com/index/introducing-simpleqa/).
41
+
42
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/lG2FqLCWXq1N8lh7wlJgW.png)
43
+
44
+ ## πŸ–₯️ How to Run Locally
45
+
46
+ Lucy can be deployed using various methods including vLLM, llama.cpp, or through local applications like Jan, LMStudio, and other compatible inference engines. The model supports integration with search APIs and web browsing tools through the MCP.
47
+
48
+ ### Deployment
49
+
50
+ Deploy using VLLM:
51
+ ```bash
52
+ vllm serve Menlo/Lucy-128k \
53
+ --host 0.0.0.0 \
54
+ --port 1234 \
55
+ --enable-auto-tool-choice \
56
+ --tool-call-parser hermes \
57
+ --rope-scaling '{"rope_type":"yarn","factor":3.2,"original_max_position_embeddings":40960}' --max-model-len 131072
58
+ ```
59
+
60
+ Or `llama-server` from `llama.cpp`:
61
+ ```bash
62
+ llama-server ... --rope-scaling yarn --rope-scale 3.2 --yarn-orig-ctx 40960
63
+ ```
64
+
65
+ ### Recommended Sampling Parameters
66
+
67
+ ```yaml
68
+ Temperature: 0.7
69
+ Top-p: 0.9
70
+ Top-k: 20
71
+ Min-p: 0.0
72
+ ```
73
+
74
+ ## 🀝 Community & Support
75
+
76
+ - **Discussions**: [HuggingFace Community](https://huggingface.co/Menlo/Lucy-128k/discussions)
77
+
78
+ ## πŸ“„ Citation
79
+
80
+ **Paper (coming soon)**: *Lucy: edgerunning agentic web search on mobile with machine generated task vectors.*