|
from transformers import PretrainedConfig
|
|
from typing import List
|
|
|
|
|
|
class ResnetConfig(PretrainedConfig):
|
|
model_type = "resnet"
|
|
|
|
def __init__(
|
|
self,
|
|
block_type="bottleneck",
|
|
layers: List[int] = [3, 4, 6, 3],
|
|
num_classes: int = 1000,
|
|
input_channels: int = 3,
|
|
cardinality: int = 1,
|
|
base_width: int = 64,
|
|
stem_width: int = 64,
|
|
stem_type: str = "",
|
|
avg_down: bool = False,
|
|
**kwargs,
|
|
):
|
|
if block_type not in ["basic", "bottleneck"]:
|
|
raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
|
|
if stem_type not in ["", "deep", "deep-tiered"]:
|
|
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
|
|
|
|
self.block_type = block_type
|
|
self.layers = layers
|
|
self.num_classes = num_classes
|
|
self.input_channels = input_channels
|
|
self.cardinality = cardinality
|
|
self.base_width = base_width
|
|
self.stem_width = stem_width
|
|
self.stem_type = stem_type
|
|
self.avg_down = avg_down
|
|
super().__init__(**kwargs) |