bertuned / README.md
waelChafei's picture
Upload 5 files
b1fae93 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: TTC4900Model
    results: []

TTC4900Model

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4669
  • Accuracy: 0.8633
  • F1: 0.7752
  • Precision: 0.7764
  • Recall: 0.7751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6784 0.04 50 1.2099 0.5995 0.2253 0.3879 0.2247
1.0203 0.08 100 0.7696 0.7533 0.4285 0.5258 0.4563
0.7322 0.12 150 0.6271 0.8152 0.6305 0.6720 0.6056
0.6119 0.16 200 0.5934 0.8270 0.6673 0.7649 0.6662
0.6203 0.2 250 0.5759 0.8281 0.6618 0.7352 0.6566
0.5874 0.24 300 0.5446 0.8373 0.7351 0.7633 0.7256
0.5507 0.28 350 0.5371 0.8394 0.7481 0.7580 0.7435
0.5615 0.33 400 0.5272 0.8469 0.7377 0.7961 0.7241
0.5371 0.37 450 0.5193 0.8431 0.7413 0.7828 0.7299
0.5267 0.41 500 0.5124 0.8490 0.7446 0.7714 0.7321
0.4971 0.45 550 0.5105 0.8509 0.7503 0.8071 0.7192
0.5399 0.49 600 0.5149 0.8473 0.7402 0.7849 0.7291
0.5229 0.53 650 0.5190 0.8447 0.7504 0.7753 0.7421
0.5077 0.57 700 0.5096 0.8487 0.7528 0.7764 0.7413
0.5073 0.61 750 0.4946 0.8511 0.7487 0.8055 0.7279
0.4823 0.65 800 0.5105 0.8506 0.7509 0.7918 0.7292
0.483 0.69 850 0.4887 0.8542 0.7653 0.7936 0.7502
0.55 0.73 900 0.4865 0.8556 0.7599 0.8010 0.7425
0.5406 0.77 950 0.4875 0.8533 0.7515 0.8018 0.7255
0.5078 0.81 1000 0.5075 0.8564 0.7528 0.8134 0.7227
0.4965 0.85 1050 0.4789 0.8560 0.7655 0.7995 0.7405
0.4676 0.89 1100 0.4806 0.8555 0.7468 0.7989 0.7244
0.4786 0.93 1150 0.4822 0.8572 0.7587 0.7762 0.7504
0.4928 0.98 1200 0.4743 0.8569 0.7553 0.8009 0.7404
0.472 1.02 1250 0.4917 0.8581 0.7511 0.8075 0.7278
0.395 1.06 1300 0.4929 0.8573 0.7657 0.7937 0.7516
0.3735 1.1 1350 0.4844 0.8558 0.7687 0.7685 0.7693
0.3974 1.14 1400 0.5005 0.8504 0.7631 0.7556 0.7732
0.4197 1.18 1450 0.5044 0.8557 0.7475 0.8096 0.7265
0.4149 1.22 1500 0.4914 0.8560 0.7556 0.8009 0.7431
0.4937 1.26 1550 0.4684 0.8583 0.7697 0.7847 0.7596
0.344 1.3 1600 0.5126 0.8570 0.7606 0.8084 0.7369
0.4399 1.34 1650 0.4856 0.8545 0.7608 0.7947 0.7490
0.4176 1.38 1700 0.4851 0.8578 0.7648 0.8018 0.7419
0.4301 1.42 1750 0.4725 0.8579 0.7673 0.7811 0.7611
0.4161 1.46 1800 0.4794 0.8587 0.7712 0.7954 0.7583
0.3632 1.5 1850 0.4835 0.8579 0.7716 0.8036 0.7543
0.4328 1.54 1900 0.4748 0.8574 0.7744 0.7958 0.7606
0.4026 1.59 1950 0.4733 0.8571 0.7726 0.7925 0.7591
0.3792 1.63 2000 0.4826 0.8593 0.7715 0.7912 0.7576
0.4087 1.67 2050 0.4732 0.8594 0.7704 0.7954 0.7525
0.3953 1.71 2100 0.4721 0.8592 0.7724 0.7869 0.7634
0.403 1.75 2150 0.4714 0.8629 0.7737 0.8055 0.7552
0.3987 1.79 2200 0.4657 0.8617 0.7729 0.7929 0.7583
0.3891 1.83 2250 0.4694 0.8609 0.7720 0.7877 0.7664
0.4266 1.87 2300 0.4716 0.8603 0.7696 0.7953 0.7625
0.3784 1.91 2350 0.4658 0.8609 0.7735 0.7968 0.7606
0.4108 1.95 2400 0.4571 0.8611 0.7746 0.8005 0.7585
0.4227 1.99 2450 0.4575 0.8634 0.7812 0.8047 0.7643
0.2896 2.03 2500 0.4835 0.8637 0.7801 0.7916 0.7730
0.3539 2.07 2550 0.4741 0.8626 0.7787 0.7974 0.7664
0.3657 2.11 2600 0.4799 0.8579 0.7737 0.7964 0.7592
0.3407 2.15 2650 0.4765 0.8604 0.7681 0.7963 0.7524
0.317 2.2 2700 0.4817 0.8583 0.7729 0.7797 0.7705
0.3166 2.24 2750 0.4886 0.8589 0.7653 0.7917 0.7553
0.3078 2.28 2800 0.4927 0.8574 0.7709 0.7888 0.7607
0.3366 2.32 2850 0.4948 0.8600 0.7735 0.7907 0.7609
0.2863 2.36 2900 0.4994 0.8578 0.7699 0.7784 0.7668
0.255 2.4 2950 0.5017 0.8601 0.7696 0.7862 0.7575
0.3379 2.44 3000 0.4824 0.8591 0.7715 0.7787 0.7671
0.2751 2.48 3050 0.4944 0.8616 0.7745 0.7965 0.7587
0.2902 2.52 3100 0.4865 0.8596 0.7751 0.7863 0.7675
0.2917 2.56 3150 0.4875 0.8608 0.7748 0.7864 0.7656
0.3014 2.6 3200 0.4872 0.8614 0.7756 0.7886 0.7663
0.3269 2.64 3250 0.4905 0.8598 0.7763 0.7884 0.7669
0.3245 2.68 3300 0.4898 0.8625 0.7778 0.7971 0.7627
0.2951 2.72 3350 0.4864 0.8599 0.7771 0.7885 0.7686
0.2888 2.76 3400 0.4906 0.8623 0.7758 0.7969 0.7609
0.3037 2.8 3450 0.4863 0.8609 0.7751 0.7939 0.7630
0.2855 2.85 3500 0.4881 0.8621 0.7773 0.7935 0.7661
0.297 2.89 3550 0.4880 0.8620 0.7786 0.7927 0.7687
0.2753 2.93 3600 0.4887 0.8615 0.7772 0.7902 0.7679
0.2922 2.97 3650 0.4876 0.8610 0.7770 0.7883 0.7691

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2