Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- README.md +98 -0
- added_tokens.json +24 -0
- all_results.json +12 -0
- checkpoint-2000/added_tokens.json +24 -0
- checkpoint-2000/config.json +29 -0
- checkpoint-2000/generation_config.json +14 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-2000/latest +1 -0
- checkpoint-2000/merges.txt +0 -0
- checkpoint-2000/model-00001-of-00004.safetensors +3 -0
- checkpoint-2000/model-00002-of-00004.safetensors +3 -0
- checkpoint-2000/model-00003-of-00004.safetensors +3 -0
- checkpoint-2000/model-00004-of-00004.safetensors +3 -0
- checkpoint-2000/model.safetensors.index.json +346 -0
- checkpoint-2000/rng_state_0.pth +3 -0
- checkpoint-2000/rng_state_1.pth +3 -0
- checkpoint-2000/rng_state_2.pth +3 -0
- checkpoint-2000/rng_state_3.pth +3 -0
- checkpoint-2000/rng_state_4.pth +3 -0
- checkpoint-2000/rng_state_5.pth +3 -0
- checkpoint-2000/rng_state_6.pth +3 -0
- checkpoint-2000/rng_state_7.pth +3 -0
- checkpoint-2000/scheduler.pt +3 -0
- checkpoint-2000/special_tokens_map.json +31 -0
- checkpoint-2000/tokenizer.json +3 -0
- checkpoint-2000/tokenizer_config.json +208 -0
- checkpoint-2000/trainer_state.json +1593 -0
- checkpoint-2000/training_args.bin +3 -0
- checkpoint-2000/vocab.json +0 -0
- checkpoint-2000/zero_to_fp32.py +604 -0
- checkpoint-3000/added_tokens.json +24 -0
- checkpoint-3000/config.json +29 -0
- checkpoint-3000/generation_config.json +14 -0
- checkpoint-3000/global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoint-2000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: other
|
| 4 |
+
base_model: Qwen/Qwen2.5-7B-Instruct
|
| 5 |
+
tags:
|
| 6 |
+
- llama-factory
|
| 7 |
+
- full
|
| 8 |
+
- generated_from_trainer
|
| 9 |
+
model-index:
|
| 10 |
+
- name: Qwen2.5-7B-Instruct
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# Qwen2.5-7B-Instruct
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the self_ask_train_data dataset.
|
| 20 |
+
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.8082
|
| 22 |
+
|
| 23 |
+
## Model description
|
| 24 |
+
|
| 25 |
+
More information needed
|
| 26 |
+
|
| 27 |
+
## Intended uses & limitations
|
| 28 |
+
|
| 29 |
+
More information needed
|
| 30 |
+
|
| 31 |
+
## Training and evaluation data
|
| 32 |
+
|
| 33 |
+
More information needed
|
| 34 |
+
|
| 35 |
+
## Training procedure
|
| 36 |
+
|
| 37 |
+
### Training hyperparameters
|
| 38 |
+
|
| 39 |
+
The following hyperparameters were used during training:
|
| 40 |
+
- learning_rate: 5e-06
|
| 41 |
+
- train_batch_size: 1
|
| 42 |
+
- eval_batch_size: 1
|
| 43 |
+
- seed: 42
|
| 44 |
+
- distributed_type: multi-GPU
|
| 45 |
+
- num_devices: 8
|
| 46 |
+
- gradient_accumulation_steps: 2
|
| 47 |
+
- total_train_batch_size: 16
|
| 48 |
+
- total_eval_batch_size: 8
|
| 49 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 50 |
+
- lr_scheduler_type: cosine
|
| 51 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 52 |
+
- num_epochs: 3.0
|
| 53 |
+
|
| 54 |
+
### Training results
|
| 55 |
+
|
| 56 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 57 |
+
|:-------------:|:------:|:----:|:---------------:|
|
| 58 |
+
| 0.8711 | 0.0889 | 100 | 0.8548 |
|
| 59 |
+
| 0.8052 | 0.1778 | 200 | 0.8143 |
|
| 60 |
+
| 0.8071 | 0.2667 | 300 | 0.8015 |
|
| 61 |
+
| 0.7912 | 0.3556 | 400 | 0.7962 |
|
| 62 |
+
| 0.8086 | 0.4444 | 500 | 0.7914 |
|
| 63 |
+
| 0.7614 | 0.5333 | 600 | 0.7859 |
|
| 64 |
+
| 0.7758 | 0.6222 | 700 | 0.7828 |
|
| 65 |
+
| 0.8026 | 0.7111 | 800 | 0.7794 |
|
| 66 |
+
| 0.8 | 0.8 | 900 | 0.7757 |
|
| 67 |
+
| 0.7568 | 0.8889 | 1000 | 0.7740 |
|
| 68 |
+
| 0.7954 | 0.9778 | 1100 | 0.7712 |
|
| 69 |
+
| 0.6518 | 1.0667 | 1200 | 0.7852 |
|
| 70 |
+
| 0.6344 | 1.1556 | 1300 | 0.7862 |
|
| 71 |
+
| 0.6181 | 1.2444 | 1400 | 0.7869 |
|
| 72 |
+
| 0.6511 | 1.3333 | 1500 | 0.7798 |
|
| 73 |
+
| 0.6341 | 1.4222 | 1600 | 0.7812 |
|
| 74 |
+
| 0.6537 | 1.5111 | 1700 | 0.7794 |
|
| 75 |
+
| 0.6626 | 1.6 | 1800 | 0.7780 |
|
| 76 |
+
| 0.6116 | 1.6889 | 1900 | 0.7766 |
|
| 77 |
+
| 0.6327 | 1.7778 | 2000 | 0.7731 |
|
| 78 |
+
| 0.6168 | 1.8667 | 2100 | 0.7714 |
|
| 79 |
+
| 0.6354 | 1.9556 | 2200 | 0.7699 |
|
| 80 |
+
| 0.5238 | 2.0444 | 2300 | 0.8105 |
|
| 81 |
+
| 0.4994 | 2.1333 | 2400 | 0.8090 |
|
| 82 |
+
| 0.481 | 2.2222 | 2500 | 0.8098 |
|
| 83 |
+
| 0.4976 | 2.3111 | 2600 | 0.8098 |
|
| 84 |
+
| 0.5061 | 2.4 | 2700 | 0.8085 |
|
| 85 |
+
| 0.5184 | 2.4889 | 2800 | 0.8096 |
|
| 86 |
+
| 0.5024 | 2.5778 | 2900 | 0.8094 |
|
| 87 |
+
| 0.5086 | 2.6667 | 3000 | 0.8081 |
|
| 88 |
+
| 0.5008 | 2.7556 | 3100 | 0.8081 |
|
| 89 |
+
| 0.5021 | 2.8444 | 3200 | 0.8082 |
|
| 90 |
+
| 0.4808 | 2.9333 | 3300 | 0.8082 |
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
### Framework versions
|
| 94 |
+
|
| 95 |
+
- Transformers 4.46.1
|
| 96 |
+
- Pytorch 2.5.1+cu124
|
| 97 |
+
- Datasets 2.21.0
|
| 98 |
+
- Tokenizers 0.20.3
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 3.0,
|
| 3 |
+
"eval_loss": 0.8082394003868103,
|
| 4 |
+
"eval_runtime": 38.2561,
|
| 5 |
+
"eval_samples_per_second": 52.279,
|
| 6 |
+
"eval_steps_per_second": 6.535,
|
| 7 |
+
"total_flos": 173592713248768.0,
|
| 8 |
+
"train_loss": 0.6526138088791459,
|
| 9 |
+
"train_runtime": 5605.6539,
|
| 10 |
+
"train_samples_per_second": 9.633,
|
| 11 |
+
"train_steps_per_second": 0.602
|
| 12 |
+
}
|
checkpoint-2000/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-2000/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 18944,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 28,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 4,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"rope_theta": 1000000.0,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.46.1",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 152064
|
| 29 |
+
}
|
checkpoint-2000/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.46.1"
|
| 14 |
+
}
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ec4963aefde519bfa290df416855fdc601c9985cc7340e1ac53cb70462f0f63
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:064bde90bac96d3ae0335a945eb1eb1fb6923966b8bdd7b0f98d6e9f533a9063
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ba6d0fa5d670bf71d22371e3ae39f76aeee315d30bf1f50f5f27a468968caea
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfb3a5d0aa42bf46113213b5ea8702920360d047cb22772bb2afdf172b623fae
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1fe870c29b69fc1be568db01d80f42898cd0aa51cab50eb94b5736b7acf7f594
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b74506576e2c6904d2179eed1293f617bdf98f1a8a6e35c4040d03eaad28c1c
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9a15c6a39b6c79dd436862725da9802df29b9e8d11ef41b0c52c8a4d055454e
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d41acc996c67d4b1668077f12ae9f29d5b0cc7cead1ed3dd45e144dc2cbe7694
|
| 3 |
+
size 11423430028
|
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24b959dba227c4ddf656d91cd1c38459188fe407c0509cc9a4cb8727585f9603
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f56f48d4df025ede26974d4018e3e7d036f2c68f0a089fdb6bc322e93c1ac436
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75d30916d5f48e6cbe0daf8b4323cb578b19123f8152a16b71502fe062eec64b
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:641b0d745bffa34b6dedda7bbb1812e06d2207af837e1c4d821dd18a24c4f607
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8979044e5d7e6e9da13496613a171684c603fb1633c7d65ba939960e9cad5775
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18e06f547a53cb0b67d9fd2cbaaf1f4e8d3065a3d0fb22684856e2fe26bd2ef7
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b00790723f4f010faf5efae4eca7d12a5ab043416eb039b5364193bdd43f0e70
|
| 3 |
+
size 168277
|
checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:434e832401e21f7e825d2656338a6ed1935713151b690304c82065435d60aa8a
|
| 3 |
+
size 168277
|
checkpoint-2000/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2000
|
checkpoint-2000/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2000/model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce61da88da5accc0db8f38ba80f8c1eccaeaed122cc846cd4689d5a9130071f5
|
| 3 |
+
size 4877660776
|
checkpoint-2000/model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:69f630b9731bc146d762a5f9046afa214eddbcbbd2996fca1827fe94968e2416
|
| 3 |
+
size 4932751008
|
checkpoint-2000/model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3967a7a0bb19277e6d0d686b61337c0287eeaa27189a4fddc56ba1a24814f378
|
| 3 |
+
size 4330865200
|
checkpoint-2000/model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b2f1d559070bb819a86bde59ed06d6746d521439dd06c165e7c333e7042cd72
|
| 3 |
+
size 1089994880
|
checkpoint-2000/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15231233024
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 345 |
+
}
|
| 346 |
+
}
|
checkpoint-2000/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ffbd38f2626212a6ee67166039a4e916fc424a3ef78a112b81ecba34404f3d1
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:761cc4f38afe955241d2348fca72dd9656d9ebe889e2a62241d58bd4bc402ab3
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df49e54f3e60ca7b97616f5b3ec776cb88dd34df15356bfe0565e073195eabb5
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a34a02b568d14f0c9040613f420faf5a53edb4c287e30c4c7c5812d2c661932
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbb893a42ae156daa2dddcfcf2ef773c576ec3c274aaf9e5a216bd1d659a190b
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b966d4dca42c479a7d82dd6ce6a32209ee7e19048adffff6ca6d5cbfafe89c52
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfdec22eeccd05416d2a00acd09a775df394351b2aa4e3b1d32df8f7f4a8b07f
|
| 3 |
+
size 15984
|
checkpoint-2000/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89e852c764f530a6e44842564809b78387dfa34f7ec6fcece34742866c5d452e
|
| 3 |
+
size 15984
|
checkpoint-2000/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc6c2bcd9b76d33bd8c89a00cca67d819437a66a3d71f03aee9d963b3a1b6c2c
|
| 3 |
+
size 1064
|
checkpoint-2000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-2000/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-2000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"model_max_length": 131072,
|
| 203 |
+
"pad_token": "<|endoftext|>",
|
| 204 |
+
"padding_side": "right",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-2000/trainer_state.json
ADDED
|
@@ -0,0 +1,1593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.7777777777777777,
|
| 5 |
+
"eval_steps": 100,
|
| 6 |
+
"global_step": 2000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.008888888888888889,
|
| 13 |
+
"grad_norm": 6.312672588322296,
|
| 14 |
+
"learning_rate": 1.4792899408284025e-07,
|
| 15 |
+
"loss": 1.1997,
|
| 16 |
+
"step": 10
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.017777777777777778,
|
| 20 |
+
"grad_norm": 6.5395437094474875,
|
| 21 |
+
"learning_rate": 2.958579881656805e-07,
|
| 22 |
+
"loss": 1.2188,
|
| 23 |
+
"step": 20
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.02666666666666667,
|
| 27 |
+
"grad_norm": 5.051656620162693,
|
| 28 |
+
"learning_rate": 4.4378698224852073e-07,
|
| 29 |
+
"loss": 1.1654,
|
| 30 |
+
"step": 30
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.035555555555555556,
|
| 34 |
+
"grad_norm": 3.245773084025693,
|
| 35 |
+
"learning_rate": 5.91715976331361e-07,
|
| 36 |
+
"loss": 1.0942,
|
| 37 |
+
"step": 40
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.044444444444444446,
|
| 41 |
+
"grad_norm": 2.594184571301331,
|
| 42 |
+
"learning_rate": 7.396449704142013e-07,
|
| 43 |
+
"loss": 1.0498,
|
| 44 |
+
"step": 50
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.05333333333333334,
|
| 48 |
+
"grad_norm": 2.168963351286361,
|
| 49 |
+
"learning_rate": 8.875739644970415e-07,
|
| 50 |
+
"loss": 0.9403,
|
| 51 |
+
"step": 60
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.06222222222222222,
|
| 55 |
+
"grad_norm": 1.9004139854270057,
|
| 56 |
+
"learning_rate": 1.0355029585798817e-06,
|
| 57 |
+
"loss": 0.9099,
|
| 58 |
+
"step": 70
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.07111111111111111,
|
| 62 |
+
"grad_norm": 2.2242455117026494,
|
| 63 |
+
"learning_rate": 1.183431952662722e-06,
|
| 64 |
+
"loss": 0.8998,
|
| 65 |
+
"step": 80
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.08,
|
| 69 |
+
"grad_norm": 1.8519949378838332,
|
| 70 |
+
"learning_rate": 1.3313609467455623e-06,
|
| 71 |
+
"loss": 0.859,
|
| 72 |
+
"step": 90
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.08888888888888889,
|
| 76 |
+
"grad_norm": 1.8728553263645957,
|
| 77 |
+
"learning_rate": 1.4792899408284026e-06,
|
| 78 |
+
"loss": 0.8711,
|
| 79 |
+
"step": 100
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.08888888888888889,
|
| 83 |
+
"eval_loss": 0.8548257946968079,
|
| 84 |
+
"eval_runtime": 38.267,
|
| 85 |
+
"eval_samples_per_second": 52.264,
|
| 86 |
+
"eval_steps_per_second": 6.533,
|
| 87 |
+
"step": 100
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.09777777777777778,
|
| 91 |
+
"grad_norm": 2.116764307544036,
|
| 92 |
+
"learning_rate": 1.6272189349112426e-06,
|
| 93 |
+
"loss": 0.8557,
|
| 94 |
+
"step": 110
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.10666666666666667,
|
| 98 |
+
"grad_norm": 2.0364313595247467,
|
| 99 |
+
"learning_rate": 1.775147928994083e-06,
|
| 100 |
+
"loss": 0.8619,
|
| 101 |
+
"step": 120
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.11555555555555555,
|
| 105 |
+
"grad_norm": 1.7761221870002313,
|
| 106 |
+
"learning_rate": 1.9230769230769234e-06,
|
| 107 |
+
"loss": 0.86,
|
| 108 |
+
"step": 130
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.12444444444444444,
|
| 112 |
+
"grad_norm": 1.8902384905200484,
|
| 113 |
+
"learning_rate": 2.0710059171597635e-06,
|
| 114 |
+
"loss": 0.8483,
|
| 115 |
+
"step": 140
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.13333333333333333,
|
| 119 |
+
"grad_norm": 2.0970800465534793,
|
| 120 |
+
"learning_rate": 2.2189349112426035e-06,
|
| 121 |
+
"loss": 0.8841,
|
| 122 |
+
"step": 150
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.14222222222222222,
|
| 126 |
+
"grad_norm": 2.0388812214422005,
|
| 127 |
+
"learning_rate": 2.366863905325444e-06,
|
| 128 |
+
"loss": 0.8491,
|
| 129 |
+
"step": 160
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.1511111111111111,
|
| 133 |
+
"grad_norm": 1.9949400049388208,
|
| 134 |
+
"learning_rate": 2.5147928994082845e-06,
|
| 135 |
+
"loss": 0.8252,
|
| 136 |
+
"step": 170
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.16,
|
| 140 |
+
"grad_norm": 1.7986729179125904,
|
| 141 |
+
"learning_rate": 2.6627218934911246e-06,
|
| 142 |
+
"loss": 0.8345,
|
| 143 |
+
"step": 180
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.1688888888888889,
|
| 147 |
+
"grad_norm": 1.8870696385512356,
|
| 148 |
+
"learning_rate": 2.8106508875739646e-06,
|
| 149 |
+
"loss": 0.8259,
|
| 150 |
+
"step": 190
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.17777777777777778,
|
| 154 |
+
"grad_norm": 1.8573694639357368,
|
| 155 |
+
"learning_rate": 2.958579881656805e-06,
|
| 156 |
+
"loss": 0.8052,
|
| 157 |
+
"step": 200
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.17777777777777778,
|
| 161 |
+
"eval_loss": 0.8143225312232971,
|
| 162 |
+
"eval_runtime": 37.9982,
|
| 163 |
+
"eval_samples_per_second": 52.634,
|
| 164 |
+
"eval_steps_per_second": 6.579,
|
| 165 |
+
"step": 200
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.18666666666666668,
|
| 169 |
+
"grad_norm": 1.8655947177959404,
|
| 170 |
+
"learning_rate": 3.106508875739645e-06,
|
| 171 |
+
"loss": 0.827,
|
| 172 |
+
"step": 210
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"epoch": 0.19555555555555557,
|
| 176 |
+
"grad_norm": 1.870936582770945,
|
| 177 |
+
"learning_rate": 3.2544378698224853e-06,
|
| 178 |
+
"loss": 0.813,
|
| 179 |
+
"step": 220
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"epoch": 0.20444444444444446,
|
| 183 |
+
"grad_norm": 2.109320545375679,
|
| 184 |
+
"learning_rate": 3.4023668639053257e-06,
|
| 185 |
+
"loss": 0.8174,
|
| 186 |
+
"step": 230
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"epoch": 0.21333333333333335,
|
| 190 |
+
"grad_norm": 1.8097321542077869,
|
| 191 |
+
"learning_rate": 3.550295857988166e-06,
|
| 192 |
+
"loss": 0.8182,
|
| 193 |
+
"step": 240
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 0.2222222222222222,
|
| 197 |
+
"grad_norm": 1.728199611021706,
|
| 198 |
+
"learning_rate": 3.6982248520710063e-06,
|
| 199 |
+
"loss": 0.8123,
|
| 200 |
+
"step": 250
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.2311111111111111,
|
| 204 |
+
"grad_norm": 2.0315555925984348,
|
| 205 |
+
"learning_rate": 3.846153846153847e-06,
|
| 206 |
+
"loss": 0.7728,
|
| 207 |
+
"step": 260
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.24,
|
| 211 |
+
"grad_norm": 1.5850711075399915,
|
| 212 |
+
"learning_rate": 3.9940828402366864e-06,
|
| 213 |
+
"loss": 0.7917,
|
| 214 |
+
"step": 270
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"epoch": 0.24888888888888888,
|
| 218 |
+
"grad_norm": 1.927987824759959,
|
| 219 |
+
"learning_rate": 4.142011834319527e-06,
|
| 220 |
+
"loss": 0.8142,
|
| 221 |
+
"step": 280
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 0.2577777777777778,
|
| 225 |
+
"grad_norm": 1.9163193176432178,
|
| 226 |
+
"learning_rate": 4.289940828402367e-06,
|
| 227 |
+
"loss": 0.8177,
|
| 228 |
+
"step": 290
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"epoch": 0.26666666666666666,
|
| 232 |
+
"grad_norm": 1.9493054796009528,
|
| 233 |
+
"learning_rate": 4.437869822485207e-06,
|
| 234 |
+
"loss": 0.8071,
|
| 235 |
+
"step": 300
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"epoch": 0.26666666666666666,
|
| 239 |
+
"eval_loss": 0.8015236854553223,
|
| 240 |
+
"eval_runtime": 38.0122,
|
| 241 |
+
"eval_samples_per_second": 52.615,
|
| 242 |
+
"eval_steps_per_second": 6.577,
|
| 243 |
+
"step": 300
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.27555555555555555,
|
| 247 |
+
"grad_norm": 1.7023378433784926,
|
| 248 |
+
"learning_rate": 4.5857988165680475e-06,
|
| 249 |
+
"loss": 0.8152,
|
| 250 |
+
"step": 310
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"epoch": 0.28444444444444444,
|
| 254 |
+
"grad_norm": 1.8979776132841102,
|
| 255 |
+
"learning_rate": 4.733727810650888e-06,
|
| 256 |
+
"loss": 0.8301,
|
| 257 |
+
"step": 320
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"epoch": 0.29333333333333333,
|
| 261 |
+
"grad_norm": 1.975097152658989,
|
| 262 |
+
"learning_rate": 4.8816568047337285e-06,
|
| 263 |
+
"loss": 0.8332,
|
| 264 |
+
"step": 330
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"epoch": 0.3022222222222222,
|
| 268 |
+
"grad_norm": 1.8218939536712146,
|
| 269 |
+
"learning_rate": 4.99999464967688e-06,
|
| 270 |
+
"loss": 0.8286,
|
| 271 |
+
"step": 340
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"epoch": 0.3111111111111111,
|
| 275 |
+
"grad_norm": 1.8977171195446734,
|
| 276 |
+
"learning_rate": 4.999807390772256e-06,
|
| 277 |
+
"loss": 0.8209,
|
| 278 |
+
"step": 350
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.32,
|
| 282 |
+
"grad_norm": 1.880983857135489,
|
| 283 |
+
"learning_rate": 4.999352638611963e-06,
|
| 284 |
+
"loss": 0.8311,
|
| 285 |
+
"step": 360
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.3288888888888889,
|
| 289 |
+
"grad_norm": 2.085715913698874,
|
| 290 |
+
"learning_rate": 4.998630441857007e-06,
|
| 291 |
+
"loss": 0.8194,
|
| 292 |
+
"step": 370
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"epoch": 0.3377777777777778,
|
| 296 |
+
"grad_norm": 1.8193588799474414,
|
| 297 |
+
"learning_rate": 4.997640877786446e-06,
|
| 298 |
+
"loss": 0.7961,
|
| 299 |
+
"step": 380
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"epoch": 0.3466666666666667,
|
| 303 |
+
"grad_norm": 1.7395847960563042,
|
| 304 |
+
"learning_rate": 4.996384052289124e-06,
|
| 305 |
+
"loss": 0.8235,
|
| 306 |
+
"step": 390
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 0.35555555555555557,
|
| 310 |
+
"grad_norm": 1.7517335960292617,
|
| 311 |
+
"learning_rate": 4.994860099852339e-06,
|
| 312 |
+
"loss": 0.7912,
|
| 313 |
+
"step": 400
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"epoch": 0.35555555555555557,
|
| 317 |
+
"eval_loss": 0.7962385416030884,
|
| 318 |
+
"eval_runtime": 38.0506,
|
| 319 |
+
"eval_samples_per_second": 52.562,
|
| 320 |
+
"eval_steps_per_second": 6.57,
|
| 321 |
+
"step": 400
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"epoch": 0.36444444444444446,
|
| 325 |
+
"grad_norm": 1.7751508270993985,
|
| 326 |
+
"learning_rate": 4.993069183547456e-06,
|
| 327 |
+
"loss": 0.7956,
|
| 328 |
+
"step": 410
|
| 329 |
+
},
|
| 330 |
+
{
|
| 331 |
+
"epoch": 0.37333333333333335,
|
| 332 |
+
"grad_norm": 1.905940982272453,
|
| 333 |
+
"learning_rate": 4.991011495012451e-06,
|
| 334 |
+
"loss": 0.8383,
|
| 335 |
+
"step": 420
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"epoch": 0.38222222222222224,
|
| 339 |
+
"grad_norm": 1.9604410876662892,
|
| 340 |
+
"learning_rate": 4.98868725443141e-06,
|
| 341 |
+
"loss": 0.8427,
|
| 342 |
+
"step": 430
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"epoch": 0.39111111111111113,
|
| 346 |
+
"grad_norm": 1.8801968456938927,
|
| 347 |
+
"learning_rate": 4.986096710510968e-06,
|
| 348 |
+
"loss": 0.8253,
|
| 349 |
+
"step": 440
|
| 350 |
+
},
|
| 351 |
+
{
|
| 352 |
+
"epoch": 0.4,
|
| 353 |
+
"grad_norm": 1.834581689663337,
|
| 354 |
+
"learning_rate": 4.9832401404536915e-06,
|
| 355 |
+
"loss": 0.8211,
|
| 356 |
+
"step": 450
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"epoch": 0.4088888888888889,
|
| 360 |
+
"grad_norm": 1.816476724466639,
|
| 361 |
+
"learning_rate": 4.980117849928419e-06,
|
| 362 |
+
"loss": 0.792,
|
| 363 |
+
"step": 460
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"epoch": 0.4177777777777778,
|
| 367 |
+
"grad_norm": 1.7561196396819305,
|
| 368 |
+
"learning_rate": 4.976730173037556e-06,
|
| 369 |
+
"loss": 0.8199,
|
| 370 |
+
"step": 470
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 0.4266666666666667,
|
| 374 |
+
"grad_norm": 1.883523346070099,
|
| 375 |
+
"learning_rate": 4.973077472281319e-06,
|
| 376 |
+
"loss": 0.8085,
|
| 377 |
+
"step": 480
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"epoch": 0.43555555555555553,
|
| 381 |
+
"grad_norm": 1.8002160041857591,
|
| 382 |
+
"learning_rate": 4.969160138518946e-06,
|
| 383 |
+
"loss": 0.7981,
|
| 384 |
+
"step": 490
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"epoch": 0.4444444444444444,
|
| 388 |
+
"grad_norm": 1.8807969403322338,
|
| 389 |
+
"learning_rate": 4.964978590926879e-06,
|
| 390 |
+
"loss": 0.8086,
|
| 391 |
+
"step": 500
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"epoch": 0.4444444444444444,
|
| 395 |
+
"eval_loss": 0.7913944721221924,
|
| 396 |
+
"eval_runtime": 37.9142,
|
| 397 |
+
"eval_samples_per_second": 52.751,
|
| 398 |
+
"eval_steps_per_second": 6.594,
|
| 399 |
+
"step": 500
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"epoch": 0.4533333333333333,
|
| 403 |
+
"grad_norm": 1.7162663123083326,
|
| 404 |
+
"learning_rate": 4.960533276953902e-06,
|
| 405 |
+
"loss": 0.8121,
|
| 406 |
+
"step": 510
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"epoch": 0.4622222222222222,
|
| 410 |
+
"grad_norm": 1.8966249612321189,
|
| 411 |
+
"learning_rate": 4.955824672273265e-06,
|
| 412 |
+
"loss": 0.7929,
|
| 413 |
+
"step": 520
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"epoch": 0.4711111111111111,
|
| 417 |
+
"grad_norm": 1.9877589179045125,
|
| 418 |
+
"learning_rate": 4.950853280731785e-06,
|
| 419 |
+
"loss": 0.8092,
|
| 420 |
+
"step": 530
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"epoch": 0.48,
|
| 424 |
+
"grad_norm": 1.6886441919837933,
|
| 425 |
+
"learning_rate": 4.945619634295929e-06,
|
| 426 |
+
"loss": 0.8393,
|
| 427 |
+
"step": 540
|
| 428 |
+
},
|
| 429 |
+
{
|
| 430 |
+
"epoch": 0.4888888888888889,
|
| 431 |
+
"grad_norm": 1.6732855356580696,
|
| 432 |
+
"learning_rate": 4.940124292994895e-06,
|
| 433 |
+
"loss": 0.8036,
|
| 434 |
+
"step": 550
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 0.49777777777777776,
|
| 438 |
+
"grad_norm": 1.8728351825828837,
|
| 439 |
+
"learning_rate": 4.9343678448606816e-06,
|
| 440 |
+
"loss": 0.8118,
|
| 441 |
+
"step": 560
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"epoch": 0.5066666666666667,
|
| 445 |
+
"grad_norm": 1.7910848529169285,
|
| 446 |
+
"learning_rate": 4.928350905865165e-06,
|
| 447 |
+
"loss": 0.7975,
|
| 448 |
+
"step": 570
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"epoch": 0.5155555555555555,
|
| 452 |
+
"grad_norm": 1.8879257679795278,
|
| 453 |
+
"learning_rate": 4.92207411985419e-06,
|
| 454 |
+
"loss": 0.8133,
|
| 455 |
+
"step": 580
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"epoch": 0.5244444444444445,
|
| 459 |
+
"grad_norm": 1.82915454709858,
|
| 460 |
+
"learning_rate": 4.915538158478674e-06,
|
| 461 |
+
"loss": 0.8131,
|
| 462 |
+
"step": 590
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"epoch": 0.5333333333333333,
|
| 466 |
+
"grad_norm": 1.9822261774763363,
|
| 467 |
+
"learning_rate": 4.908743721122734e-06,
|
| 468 |
+
"loss": 0.7614,
|
| 469 |
+
"step": 600
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"epoch": 0.5333333333333333,
|
| 473 |
+
"eval_loss": 0.7859019637107849,
|
| 474 |
+
"eval_runtime": 37.9245,
|
| 475 |
+
"eval_samples_per_second": 52.736,
|
| 476 |
+
"eval_steps_per_second": 6.592,
|
| 477 |
+
"step": 600
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"epoch": 0.5422222222222223,
|
| 481 |
+
"grad_norm": 1.7590845282435732,
|
| 482 |
+
"learning_rate": 4.901691534828853e-06,
|
| 483 |
+
"loss": 0.785,
|
| 484 |
+
"step": 610
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"epoch": 0.5511111111111111,
|
| 488 |
+
"grad_norm": 1.7642623616476127,
|
| 489 |
+
"learning_rate": 4.894382354220077e-06,
|
| 490 |
+
"loss": 0.8031,
|
| 491 |
+
"step": 620
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"epoch": 0.56,
|
| 495 |
+
"grad_norm": 1.9487864823051528,
|
| 496 |
+
"learning_rate": 4.886816961419272e-06,
|
| 497 |
+
"loss": 0.7899,
|
| 498 |
+
"step": 630
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"epoch": 0.5688888888888889,
|
| 502 |
+
"grad_norm": 1.8294787755068975,
|
| 503 |
+
"learning_rate": 4.8789961659654276e-06,
|
| 504 |
+
"loss": 0.8079,
|
| 505 |
+
"step": 640
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"epoch": 0.5777777777777777,
|
| 509 |
+
"grad_norm": 1.8448471765270655,
|
| 510 |
+
"learning_rate": 4.870920804727034e-06,
|
| 511 |
+
"loss": 0.8053,
|
| 512 |
+
"step": 650
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"epoch": 0.5866666666666667,
|
| 516 |
+
"grad_norm": 1.9086870869024488,
|
| 517 |
+
"learning_rate": 4.862591741812533e-06,
|
| 518 |
+
"loss": 0.7919,
|
| 519 |
+
"step": 660
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"epoch": 0.5955555555555555,
|
| 523 |
+
"grad_norm": 1.8399676032417565,
|
| 524 |
+
"learning_rate": 4.8540098684778505e-06,
|
| 525 |
+
"loss": 0.8049,
|
| 526 |
+
"step": 670
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"epoch": 0.6044444444444445,
|
| 530 |
+
"grad_norm": 1.7627163023842312,
|
| 531 |
+
"learning_rate": 4.845176103031035e-06,
|
| 532 |
+
"loss": 0.7853,
|
| 533 |
+
"step": 680
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"epoch": 0.6133333333333333,
|
| 537 |
+
"grad_norm": 1.880754220932831,
|
| 538 |
+
"learning_rate": 4.836091390733983e-06,
|
| 539 |
+
"loss": 0.7671,
|
| 540 |
+
"step": 690
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"epoch": 0.6222222222222222,
|
| 544 |
+
"grad_norm": 1.9327151521828667,
|
| 545 |
+
"learning_rate": 4.826756703701298e-06,
|
| 546 |
+
"loss": 0.7758,
|
| 547 |
+
"step": 700
|
| 548 |
+
},
|
| 549 |
+
{
|
| 550 |
+
"epoch": 0.6222222222222222,
|
| 551 |
+
"eval_loss": 0.7827751636505127,
|
| 552 |
+
"eval_runtime": 37.9583,
|
| 553 |
+
"eval_samples_per_second": 52.689,
|
| 554 |
+
"eval_steps_per_second": 6.586,
|
| 555 |
+
"step": 700
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.6311111111111111,
|
| 559 |
+
"grad_norm": 1.7085337797540057,
|
| 560 |
+
"learning_rate": 4.817173040796263e-06,
|
| 561 |
+
"loss": 0.7581,
|
| 562 |
+
"step": 710
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.64,
|
| 566 |
+
"grad_norm": 1.8693393810766439,
|
| 567 |
+
"learning_rate": 4.807341427523969e-06,
|
| 568 |
+
"loss": 0.8092,
|
| 569 |
+
"step": 720
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.6488888888888888,
|
| 573 |
+
"grad_norm": 1.9224847774084641,
|
| 574 |
+
"learning_rate": 4.797262915921561e-06,
|
| 575 |
+
"loss": 0.7905,
|
| 576 |
+
"step": 730
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.6577777777777778,
|
| 580 |
+
"grad_norm": 1.7921622260237242,
|
| 581 |
+
"learning_rate": 4.7869385844456825e-06,
|
| 582 |
+
"loss": 0.8371,
|
| 583 |
+
"step": 740
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.6666666666666666,
|
| 587 |
+
"grad_norm": 1.7662786771403587,
|
| 588 |
+
"learning_rate": 4.776369537857062e-06,
|
| 589 |
+
"loss": 0.8039,
|
| 590 |
+
"step": 750
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.6755555555555556,
|
| 594 |
+
"grad_norm": 1.67555577960425,
|
| 595 |
+
"learning_rate": 4.765556907102306e-06,
|
| 596 |
+
"loss": 0.8153,
|
| 597 |
+
"step": 760
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.6844444444444444,
|
| 601 |
+
"grad_norm": 1.8971436028748803,
|
| 602 |
+
"learning_rate": 4.7545018491928755e-06,
|
| 603 |
+
"loss": 0.777,
|
| 604 |
+
"step": 770
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.6933333333333334,
|
| 608 |
+
"grad_norm": 1.6522195956975418,
|
| 609 |
+
"learning_rate": 4.743205547081281e-06,
|
| 610 |
+
"loss": 0.7826,
|
| 611 |
+
"step": 780
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.7022222222222222,
|
| 615 |
+
"grad_norm": 1.678020666686354,
|
| 616 |
+
"learning_rate": 4.731669209534504e-06,
|
| 617 |
+
"loss": 0.797,
|
| 618 |
+
"step": 790
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.7111111111111111,
|
| 622 |
+
"grad_norm": 1.8314853043295487,
|
| 623 |
+
"learning_rate": 4.719894071004645e-06,
|
| 624 |
+
"loss": 0.8026,
|
| 625 |
+
"step": 800
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.7111111111111111,
|
| 629 |
+
"eval_loss": 0.77940833568573,
|
| 630 |
+
"eval_runtime": 37.9303,
|
| 631 |
+
"eval_samples_per_second": 52.728,
|
| 632 |
+
"eval_steps_per_second": 6.591,
|
| 633 |
+
"step": 800
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.72,
|
| 637 |
+
"grad_norm": 1.6824200358042496,
|
| 638 |
+
"learning_rate": 4.707881391496837e-06,
|
| 639 |
+
"loss": 0.7976,
|
| 640 |
+
"step": 810
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.7288888888888889,
|
| 644 |
+
"grad_norm": 1.7994312639466354,
|
| 645 |
+
"learning_rate": 4.695632456434414e-06,
|
| 646 |
+
"loss": 0.7883,
|
| 647 |
+
"step": 820
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.7377777777777778,
|
| 651 |
+
"grad_norm": 1.873881222655515,
|
| 652 |
+
"learning_rate": 4.683148576521363e-06,
|
| 653 |
+
"loss": 0.7901,
|
| 654 |
+
"step": 830
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.7466666666666667,
|
| 658 |
+
"grad_norm": 1.7081859666296215,
|
| 659 |
+
"learning_rate": 4.670431087602079e-06,
|
| 660 |
+
"loss": 0.7747,
|
| 661 |
+
"step": 840
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.7555555555555555,
|
| 665 |
+
"grad_norm": 1.817576578011179,
|
| 666 |
+
"learning_rate": 4.657481350518409e-06,
|
| 667 |
+
"loss": 0.8109,
|
| 668 |
+
"step": 850
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.7644444444444445,
|
| 672 |
+
"grad_norm": 1.827616370549138,
|
| 673 |
+
"learning_rate": 4.644300750964045e-06,
|
| 674 |
+
"loss": 0.8191,
|
| 675 |
+
"step": 860
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.7733333333333333,
|
| 679 |
+
"grad_norm": 1.783716604929134,
|
| 680 |
+
"learning_rate": 4.630890699336244e-06,
|
| 681 |
+
"loss": 0.7728,
|
| 682 |
+
"step": 870
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.7822222222222223,
|
| 686 |
+
"grad_norm": 1.8315774625359147,
|
| 687 |
+
"learning_rate": 4.6172526305849094e-06,
|
| 688 |
+
"loss": 0.7899,
|
| 689 |
+
"step": 880
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.7911111111111111,
|
| 693 |
+
"grad_norm": 1.9174012768682513,
|
| 694 |
+
"learning_rate": 4.603388004059037e-06,
|
| 695 |
+
"loss": 0.8334,
|
| 696 |
+
"step": 890
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.8,
|
| 700 |
+
"grad_norm": 1.7128496253638654,
|
| 701 |
+
"learning_rate": 4.589298303350565e-06,
|
| 702 |
+
"loss": 0.8,
|
| 703 |
+
"step": 900
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.8,
|
| 707 |
+
"eval_loss": 0.7756551504135132,
|
| 708 |
+
"eval_runtime": 38.0779,
|
| 709 |
+
"eval_samples_per_second": 52.524,
|
| 710 |
+
"eval_steps_per_second": 6.565,
|
| 711 |
+
"step": 900
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.8088888888888889,
|
| 715 |
+
"grad_norm": 2.087290188435175,
|
| 716 |
+
"learning_rate": 4.574985036135613e-06,
|
| 717 |
+
"loss": 0.7719,
|
| 718 |
+
"step": 910
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"epoch": 0.8177777777777778,
|
| 722 |
+
"grad_norm": 1.7974331962068042,
|
| 723 |
+
"learning_rate": 4.5604497340131635e-06,
|
| 724 |
+
"loss": 0.765,
|
| 725 |
+
"step": 920
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"epoch": 0.8266666666666667,
|
| 729 |
+
"grad_norm": 1.722447066657561,
|
| 730 |
+
"learning_rate": 4.545693952341159e-06,
|
| 731 |
+
"loss": 0.8213,
|
| 732 |
+
"step": 930
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"epoch": 0.8355555555555556,
|
| 736 |
+
"grad_norm": 1.8137932027496781,
|
| 737 |
+
"learning_rate": 4.5307192700700804e-06,
|
| 738 |
+
"loss": 0.8189,
|
| 739 |
+
"step": 940
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 0.8444444444444444,
|
| 743 |
+
"grad_norm": 1.7200813454468675,
|
| 744 |
+
"learning_rate": 4.515527289573986e-06,
|
| 745 |
+
"loss": 0.7995,
|
| 746 |
+
"step": 950
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.8533333333333334,
|
| 750 |
+
"grad_norm": 1.7492699579153432,
|
| 751 |
+
"learning_rate": 4.50011963647905e-06,
|
| 752 |
+
"loss": 0.8045,
|
| 753 |
+
"step": 960
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.8622222222222222,
|
| 757 |
+
"grad_norm": 1.8904981608159812,
|
| 758 |
+
"learning_rate": 4.484497959489608e-06,
|
| 759 |
+
"loss": 0.8056,
|
| 760 |
+
"step": 970
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.8711111111111111,
|
| 764 |
+
"grad_norm": 1.7842392668053924,
|
| 765 |
+
"learning_rate": 4.468663930211743e-06,
|
| 766 |
+
"loss": 0.7881,
|
| 767 |
+
"step": 980
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"epoch": 0.88,
|
| 771 |
+
"grad_norm": 1.8109751414374233,
|
| 772 |
+
"learning_rate": 4.452619242974408e-06,
|
| 773 |
+
"loss": 0.7913,
|
| 774 |
+
"step": 990
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"epoch": 0.8888888888888888,
|
| 778 |
+
"grad_norm": 1.6941534156764066,
|
| 779 |
+
"learning_rate": 4.436365614648128e-06,
|
| 780 |
+
"loss": 0.7568,
|
| 781 |
+
"step": 1000
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"epoch": 0.8888888888888888,
|
| 785 |
+
"eval_loss": 0.7739697098731995,
|
| 786 |
+
"eval_runtime": 38.0044,
|
| 787 |
+
"eval_samples_per_second": 52.625,
|
| 788 |
+
"eval_steps_per_second": 6.578,
|
| 789 |
+
"step": 1000
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"epoch": 0.8977777777777778,
|
| 793 |
+
"grad_norm": 1.7398957715176837,
|
| 794 |
+
"learning_rate": 4.4199047844612825e-06,
|
| 795 |
+
"loss": 0.812,
|
| 796 |
+
"step": 1010
|
| 797 |
+
},
|
| 798 |
+
{
|
| 799 |
+
"epoch": 0.9066666666666666,
|
| 800 |
+
"grad_norm": 1.804683657893465,
|
| 801 |
+
"learning_rate": 4.4032385138139985e-06,
|
| 802 |
+
"loss": 0.8158,
|
| 803 |
+
"step": 1020
|
| 804 |
+
},
|
| 805 |
+
{
|
| 806 |
+
"epoch": 0.9155555555555556,
|
| 807 |
+
"grad_norm": 1.8261068083326866,
|
| 808 |
+
"learning_rate": 4.386368586089674e-06,
|
| 809 |
+
"loss": 0.7766,
|
| 810 |
+
"step": 1030
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 0.9244444444444444,
|
| 814 |
+
"grad_norm": 1.929492696716588,
|
| 815 |
+
"learning_rate": 4.369296806464141e-06,
|
| 816 |
+
"loss": 0.801,
|
| 817 |
+
"step": 1040
|
| 818 |
+
},
|
| 819 |
+
{
|
| 820 |
+
"epoch": 0.9333333333333333,
|
| 821 |
+
"grad_norm": 1.8472605566952744,
|
| 822 |
+
"learning_rate": 4.3520250017125076e-06,
|
| 823 |
+
"loss": 0.7876,
|
| 824 |
+
"step": 1050
|
| 825 |
+
},
|
| 826 |
+
{
|
| 827 |
+
"epoch": 0.9422222222222222,
|
| 828 |
+
"grad_norm": 1.790367907695698,
|
| 829 |
+
"learning_rate": 4.334555020013675e-06,
|
| 830 |
+
"loss": 0.7681,
|
| 831 |
+
"step": 1060
|
| 832 |
+
},
|
| 833 |
+
{
|
| 834 |
+
"epoch": 0.9511111111111111,
|
| 835 |
+
"grad_norm": 1.6599756385687388,
|
| 836 |
+
"learning_rate": 4.316888730752583e-06,
|
| 837 |
+
"loss": 0.8135,
|
| 838 |
+
"step": 1070
|
| 839 |
+
},
|
| 840 |
+
{
|
| 841 |
+
"epoch": 0.96,
|
| 842 |
+
"grad_norm": 1.6291519979649327,
|
| 843 |
+
"learning_rate": 4.299028024320166e-06,
|
| 844 |
+
"loss": 0.7741,
|
| 845 |
+
"step": 1080
|
| 846 |
+
},
|
| 847 |
+
{
|
| 848 |
+
"epoch": 0.9688888888888889,
|
| 849 |
+
"grad_norm": 1.5442340466379858,
|
| 850 |
+
"learning_rate": 4.280974811911071e-06,
|
| 851 |
+
"loss": 0.8041,
|
| 852 |
+
"step": 1090
|
| 853 |
+
},
|
| 854 |
+
{
|
| 855 |
+
"epoch": 0.9777777777777777,
|
| 856 |
+
"grad_norm": 1.7271244824498846,
|
| 857 |
+
"learning_rate": 4.262731025319159e-06,
|
| 858 |
+
"loss": 0.7954,
|
| 859 |
+
"step": 1100
|
| 860 |
+
},
|
| 861 |
+
{
|
| 862 |
+
"epoch": 0.9777777777777777,
|
| 863 |
+
"eval_loss": 0.771242082118988,
|
| 864 |
+
"eval_runtime": 38.2542,
|
| 865 |
+
"eval_samples_per_second": 52.282,
|
| 866 |
+
"eval_steps_per_second": 6.535,
|
| 867 |
+
"step": 1100
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"epoch": 0.9866666666666667,
|
| 871 |
+
"grad_norm": 1.730188161467645,
|
| 872 |
+
"learning_rate": 4.244298616730781e-06,
|
| 873 |
+
"loss": 0.8021,
|
| 874 |
+
"step": 1110
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 0.9955555555555555,
|
| 878 |
+
"grad_norm": 1.739908218239288,
|
| 879 |
+
"learning_rate": 4.2256795585158894e-06,
|
| 880 |
+
"loss": 0.8171,
|
| 881 |
+
"step": 1120
|
| 882 |
+
},
|
| 883 |
+
{
|
| 884 |
+
"epoch": 1.0044444444444445,
|
| 885 |
+
"grad_norm": 1.6139566050826326,
|
| 886 |
+
"learning_rate": 4.2068758430169805e-06,
|
| 887 |
+
"loss": 0.708,
|
| 888 |
+
"step": 1130
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"epoch": 1.0133333333333334,
|
| 892 |
+
"grad_norm": 1.626198851176862,
|
| 893 |
+
"learning_rate": 4.187889482335905e-06,
|
| 894 |
+
"loss": 0.6309,
|
| 895 |
+
"step": 1140
|
| 896 |
+
},
|
| 897 |
+
{
|
| 898 |
+
"epoch": 1.0222222222222221,
|
| 899 |
+
"grad_norm": 1.7768887610773263,
|
| 900 |
+
"learning_rate": 4.168722508118562e-06,
|
| 901 |
+
"loss": 0.6455,
|
| 902 |
+
"step": 1150
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"epoch": 1.031111111111111,
|
| 906 |
+
"grad_norm": 1.5692860084569409,
|
| 907 |
+
"learning_rate": 4.1493769713374995e-06,
|
| 908 |
+
"loss": 0.6528,
|
| 909 |
+
"step": 1160
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 1.04,
|
| 913 |
+
"grad_norm": 1.6046426624256729,
|
| 914 |
+
"learning_rate": 4.12985494207245e-06,
|
| 915 |
+
"loss": 0.6443,
|
| 916 |
+
"step": 1170
|
| 917 |
+
},
|
| 918 |
+
{
|
| 919 |
+
"epoch": 1.048888888888889,
|
| 920 |
+
"grad_norm": 1.741907151593938,
|
| 921 |
+
"learning_rate": 4.110158509288822e-06,
|
| 922 |
+
"loss": 0.6194,
|
| 923 |
+
"step": 1180
|
| 924 |
+
},
|
| 925 |
+
{
|
| 926 |
+
"epoch": 1.0577777777777777,
|
| 927 |
+
"grad_norm": 1.7983079569047793,
|
| 928 |
+
"learning_rate": 4.090289780614167e-06,
|
| 929 |
+
"loss": 0.6544,
|
| 930 |
+
"step": 1190
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"epoch": 1.0666666666666667,
|
| 934 |
+
"grad_norm": 1.955188619876201,
|
| 935 |
+
"learning_rate": 4.070250882112652e-06,
|
| 936 |
+
"loss": 0.6518,
|
| 937 |
+
"step": 1200
|
| 938 |
+
},
|
| 939 |
+
{
|
| 940 |
+
"epoch": 1.0666666666666667,
|
| 941 |
+
"eval_loss": 0.7851578593254089,
|
| 942 |
+
"eval_runtime": 38.1241,
|
| 943 |
+
"eval_samples_per_second": 52.46,
|
| 944 |
+
"eval_steps_per_second": 6.558,
|
| 945 |
+
"step": 1200
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 1.0755555555555556,
|
| 949 |
+
"grad_norm": 1.7232020856742132,
|
| 950 |
+
"learning_rate": 4.050043958057561e-06,
|
| 951 |
+
"loss": 0.6258,
|
| 952 |
+
"step": 1210
|
| 953 |
+
},
|
| 954 |
+
{
|
| 955 |
+
"epoch": 1.0844444444444445,
|
| 956 |
+
"grad_norm": 1.593862025253077,
|
| 957 |
+
"learning_rate": 4.029671170701841e-06,
|
| 958 |
+
"loss": 0.6347,
|
| 959 |
+
"step": 1220
|
| 960 |
+
},
|
| 961 |
+
{
|
| 962 |
+
"epoch": 1.0933333333333333,
|
| 963 |
+
"grad_norm": 1.8219516480738216,
|
| 964 |
+
"learning_rate": 4.009134700046735e-06,
|
| 965 |
+
"loss": 0.6266,
|
| 966 |
+
"step": 1230
|
| 967 |
+
},
|
| 968 |
+
{
|
| 969 |
+
"epoch": 1.1022222222222222,
|
| 970 |
+
"grad_norm": 1.714593831219954,
|
| 971 |
+
"learning_rate": 3.988436743608506e-06,
|
| 972 |
+
"loss": 0.6077,
|
| 973 |
+
"step": 1240
|
| 974 |
+
},
|
| 975 |
+
{
|
| 976 |
+
"epoch": 1.1111111111111112,
|
| 977 |
+
"grad_norm": 1.7671062357329015,
|
| 978 |
+
"learning_rate": 3.967579516183292e-06,
|
| 979 |
+
"loss": 0.6797,
|
| 980 |
+
"step": 1250
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"epoch": 1.12,
|
| 984 |
+
"grad_norm": 1.6809718048297995,
|
| 985 |
+
"learning_rate": 3.946565249610108e-06,
|
| 986 |
+
"loss": 0.6416,
|
| 987 |
+
"step": 1260
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"epoch": 1.1288888888888888,
|
| 991 |
+
"grad_norm": 1.7070363329071652,
|
| 992 |
+
"learning_rate": 3.925396192532032e-06,
|
| 993 |
+
"loss": 0.6252,
|
| 994 |
+
"step": 1270
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 1.1377777777777778,
|
| 998 |
+
"grad_norm": 1.7723751757721016,
|
| 999 |
+
"learning_rate": 3.90407461015558e-06,
|
| 1000 |
+
"loss": 0.6467,
|
| 1001 |
+
"step": 1280
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"epoch": 1.1466666666666667,
|
| 1005 |
+
"grad_norm": 1.7601350100326427,
|
| 1006 |
+
"learning_rate": 3.882602784008327e-06,
|
| 1007 |
+
"loss": 0.6068,
|
| 1008 |
+
"step": 1290
|
| 1009 |
+
},
|
| 1010 |
+
{
|
| 1011 |
+
"epoch": 1.1555555555555554,
|
| 1012 |
+
"grad_norm": 1.7206913356738147,
|
| 1013 |
+
"learning_rate": 3.8609830116947596e-06,
|
| 1014 |
+
"loss": 0.6344,
|
| 1015 |
+
"step": 1300
|
| 1016 |
+
},
|
| 1017 |
+
{
|
| 1018 |
+
"epoch": 1.1555555555555554,
|
| 1019 |
+
"eval_loss": 0.7862110137939453,
|
| 1020 |
+
"eval_runtime": 37.9389,
|
| 1021 |
+
"eval_samples_per_second": 52.716,
|
| 1022 |
+
"eval_steps_per_second": 6.59,
|
| 1023 |
+
"step": 1300
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"epoch": 1.1644444444444444,
|
| 1027 |
+
"grad_norm": 1.6860528463901245,
|
| 1028 |
+
"learning_rate": 3.839217606650426e-06,
|
| 1029 |
+
"loss": 0.6412,
|
| 1030 |
+
"step": 1310
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"epoch": 1.1733333333333333,
|
| 1034 |
+
"grad_norm": 1.8854670032384495,
|
| 1035 |
+
"learning_rate": 3.817308897894387e-06,
|
| 1036 |
+
"loss": 0.6335,
|
| 1037 |
+
"step": 1320
|
| 1038 |
+
},
|
| 1039 |
+
{
|
| 1040 |
+
"epoch": 1.1822222222222223,
|
| 1041 |
+
"grad_norm": 1.728477549429402,
|
| 1042 |
+
"learning_rate": 3.7952592297799904e-06,
|
| 1043 |
+
"loss": 0.6068,
|
| 1044 |
+
"step": 1330
|
| 1045 |
+
},
|
| 1046 |
+
{
|
| 1047 |
+
"epoch": 1.1911111111111112,
|
| 1048 |
+
"grad_norm": 1.6820412004849736,
|
| 1049 |
+
"learning_rate": 3.7730709617440227e-06,
|
| 1050 |
+
"loss": 0.6379,
|
| 1051 |
+
"step": 1340
|
| 1052 |
+
},
|
| 1053 |
+
{
|
| 1054 |
+
"epoch": 1.2,
|
| 1055 |
+
"grad_norm": 1.648510966848167,
|
| 1056 |
+
"learning_rate": 3.750746468054227e-06,
|
| 1057 |
+
"loss": 0.625,
|
| 1058 |
+
"step": 1350
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"epoch": 1.208888888888889,
|
| 1062 |
+
"grad_norm": 1.548799904758873,
|
| 1063 |
+
"learning_rate": 3.7282881375552475e-06,
|
| 1064 |
+
"loss": 0.622,
|
| 1065 |
+
"step": 1360
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"epoch": 1.2177777777777778,
|
| 1069 |
+
"grad_norm": 1.6536705835515702,
|
| 1070 |
+
"learning_rate": 3.70569837341301e-06,
|
| 1071 |
+
"loss": 0.6554,
|
| 1072 |
+
"step": 1370
|
| 1073 |
+
},
|
| 1074 |
+
{
|
| 1075 |
+
"epoch": 1.2266666666666666,
|
| 1076 |
+
"grad_norm": 1.6426851875006678,
|
| 1077 |
+
"learning_rate": 3.6829795928575703e-06,
|
| 1078 |
+
"loss": 0.6234,
|
| 1079 |
+
"step": 1380
|
| 1080 |
+
},
|
| 1081 |
+
{
|
| 1082 |
+
"epoch": 1.2355555555555555,
|
| 1083 |
+
"grad_norm": 1.6903272164553882,
|
| 1084 |
+
"learning_rate": 3.6601342269244528e-06,
|
| 1085 |
+
"loss": 0.6482,
|
| 1086 |
+
"step": 1390
|
| 1087 |
+
},
|
| 1088 |
+
{
|
| 1089 |
+
"epoch": 1.2444444444444445,
|
| 1090 |
+
"grad_norm": 1.86253547762314,
|
| 1091 |
+
"learning_rate": 3.6371647201945216e-06,
|
| 1092 |
+
"loss": 0.6181,
|
| 1093 |
+
"step": 1400
|
| 1094 |
+
},
|
| 1095 |
+
{
|
| 1096 |
+
"epoch": 1.2444444444444445,
|
| 1097 |
+
"eval_loss": 0.7869328856468201,
|
| 1098 |
+
"eval_runtime": 38.111,
|
| 1099 |
+
"eval_samples_per_second": 52.478,
|
| 1100 |
+
"eval_steps_per_second": 6.56,
|
| 1101 |
+
"step": 1400
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 1.2533333333333334,
|
| 1105 |
+
"grad_norm": 1.6989175526314024,
|
| 1106 |
+
"learning_rate": 3.6140735305323943e-06,
|
| 1107 |
+
"loss": 0.6278,
|
| 1108 |
+
"step": 1410
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 1.2622222222222224,
|
| 1112 |
+
"grad_norm": 1.8101109025301771,
|
| 1113 |
+
"learning_rate": 3.5908631288234374e-06,
|
| 1114 |
+
"loss": 0.6706,
|
| 1115 |
+
"step": 1420
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 1.271111111111111,
|
| 1119 |
+
"grad_norm": 1.9867263313582206,
|
| 1120 |
+
"learning_rate": 3.5675359987093665e-06,
|
| 1121 |
+
"loss": 0.6385,
|
| 1122 |
+
"step": 1430
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 1.28,
|
| 1126 |
+
"grad_norm": 1.7574128013903643,
|
| 1127 |
+
"learning_rate": 3.5440946363224855e-06,
|
| 1128 |
+
"loss": 0.6301,
|
| 1129 |
+
"step": 1440
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 1.2888888888888888,
|
| 1133 |
+
"grad_norm": 1.4549225489268687,
|
| 1134 |
+
"learning_rate": 3.5205415500185836e-06,
|
| 1135 |
+
"loss": 0.6311,
|
| 1136 |
+
"step": 1450
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 1.2977777777777777,
|
| 1140 |
+
"grad_norm": 1.6494499992222607,
|
| 1141 |
+
"learning_rate": 3.4968792601085296e-06,
|
| 1142 |
+
"loss": 0.6596,
|
| 1143 |
+
"step": 1460
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 1.3066666666666666,
|
| 1147 |
+
"grad_norm": 1.8893405889710921,
|
| 1148 |
+
"learning_rate": 3.473110298588584e-06,
|
| 1149 |
+
"loss": 0.6493,
|
| 1150 |
+
"step": 1470
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 1.3155555555555556,
|
| 1154 |
+
"grad_norm": 1.6296063762923343,
|
| 1155 |
+
"learning_rate": 3.4492372088694605e-06,
|
| 1156 |
+
"loss": 0.6688,
|
| 1157 |
+
"step": 1480
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 1.3244444444444445,
|
| 1161 |
+
"grad_norm": 1.8187009493229125,
|
| 1162 |
+
"learning_rate": 3.4252625455041684e-06,
|
| 1163 |
+
"loss": 0.6553,
|
| 1164 |
+
"step": 1490
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 1.3333333333333333,
|
| 1168 |
+
"grad_norm": 1.6186019742868865,
|
| 1169 |
+
"learning_rate": 3.4011888739146587e-06,
|
| 1170 |
+
"loss": 0.6511,
|
| 1171 |
+
"step": 1500
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 1.3333333333333333,
|
| 1175 |
+
"eval_loss": 0.7797905206680298,
|
| 1176 |
+
"eval_runtime": 38.0768,
|
| 1177 |
+
"eval_samples_per_second": 52.525,
|
| 1178 |
+
"eval_steps_per_second": 6.566,
|
| 1179 |
+
"step": 1500
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 1.3422222222222222,
|
| 1183 |
+
"grad_norm": 1.5328967371738955,
|
| 1184 |
+
"learning_rate": 3.377018770117315e-06,
|
| 1185 |
+
"loss": 0.6541,
|
| 1186 |
+
"step": 1510
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 1.3511111111111112,
|
| 1190 |
+
"grad_norm": 1.7168181133470535,
|
| 1191 |
+
"learning_rate": 3.3527548204472985e-06,
|
| 1192 |
+
"loss": 0.6492,
|
| 1193 |
+
"step": 1520
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 1.3599999999999999,
|
| 1197 |
+
"grad_norm": 1.82949982113254,
|
| 1198 |
+
"learning_rate": 3.3283996212818015e-06,
|
| 1199 |
+
"loss": 0.6125,
|
| 1200 |
+
"step": 1530
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 1.3688888888888888,
|
| 1204 |
+
"grad_norm": 1.967299918797367,
|
| 1205 |
+
"learning_rate": 3.303955778762217e-06,
|
| 1206 |
+
"loss": 0.6609,
|
| 1207 |
+
"step": 1540
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 1.3777777777777778,
|
| 1211 |
+
"grad_norm": 1.7517637260410819,
|
| 1212 |
+
"learning_rate": 3.2794259085152703e-06,
|
| 1213 |
+
"loss": 0.6451,
|
| 1214 |
+
"step": 1550
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 1.3866666666666667,
|
| 1218 |
+
"grad_norm": 1.7338666575605146,
|
| 1219 |
+
"learning_rate": 3.254812635373128e-06,
|
| 1220 |
+
"loss": 0.6064,
|
| 1221 |
+
"step": 1560
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 1.3955555555555557,
|
| 1225 |
+
"grad_norm": 1.805258582558589,
|
| 1226 |
+
"learning_rate": 3.2301185930925318e-06,
|
| 1227 |
+
"loss": 0.6349,
|
| 1228 |
+
"step": 1570
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 1.4044444444444444,
|
| 1232 |
+
"grad_norm": 2.0099902327429495,
|
| 1233 |
+
"learning_rate": 3.205346424072967e-06,
|
| 1234 |
+
"loss": 0.6354,
|
| 1235 |
+
"step": 1580
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 1.4133333333333333,
|
| 1239 |
+
"grad_norm": 1.6968495111035833,
|
| 1240 |
+
"learning_rate": 3.180498779073915e-06,
|
| 1241 |
+
"loss": 0.6008,
|
| 1242 |
+
"step": 1590
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 1.4222222222222223,
|
| 1246 |
+
"grad_norm": 1.8666501019542727,
|
| 1247 |
+
"learning_rate": 3.1555783169312048e-06,
|
| 1248 |
+
"loss": 0.6341,
|
| 1249 |
+
"step": 1600
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 1.4222222222222223,
|
| 1253 |
+
"eval_loss": 0.7812256217002869,
|
| 1254 |
+
"eval_runtime": 37.9688,
|
| 1255 |
+
"eval_samples_per_second": 52.675,
|
| 1256 |
+
"eval_steps_per_second": 6.584,
|
| 1257 |
+
"step": 1600
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"epoch": 1.431111111111111,
|
| 1261 |
+
"grad_norm": 1.7447699710116413,
|
| 1262 |
+
"learning_rate": 3.1305877042725036e-06,
|
| 1263 |
+
"loss": 0.6548,
|
| 1264 |
+
"step": 1610
|
| 1265 |
+
},
|
| 1266 |
+
{
|
| 1267 |
+
"epoch": 1.44,
|
| 1268 |
+
"grad_norm": 1.6795897002264613,
|
| 1269 |
+
"learning_rate": 3.1055296152319732e-06,
|
| 1270 |
+
"loss": 0.6442,
|
| 1271 |
+
"step": 1620
|
| 1272 |
+
},
|
| 1273 |
+
{
|
| 1274 |
+
"epoch": 1.448888888888889,
|
| 1275 |
+
"grad_norm": 1.8760743794492893,
|
| 1276 |
+
"learning_rate": 3.0804067311641217e-06,
|
| 1277 |
+
"loss": 0.66,
|
| 1278 |
+
"step": 1630
|
| 1279 |
+
},
|
| 1280 |
+
{
|
| 1281 |
+
"epoch": 1.4577777777777778,
|
| 1282 |
+
"grad_norm": 1.9884017264018043,
|
| 1283 |
+
"learning_rate": 3.0552217403568855e-06,
|
| 1284 |
+
"loss": 0.6269,
|
| 1285 |
+
"step": 1640
|
| 1286 |
+
},
|
| 1287 |
+
{
|
| 1288 |
+
"epoch": 1.4666666666666668,
|
| 1289 |
+
"grad_norm": 1.8411666706892968,
|
| 1290 |
+
"learning_rate": 3.0299773377439677e-06,
|
| 1291 |
+
"loss": 0.6277,
|
| 1292 |
+
"step": 1650
|
| 1293 |
+
},
|
| 1294 |
+
{
|
| 1295 |
+
"epoch": 1.4755555555555555,
|
| 1296 |
+
"grad_norm": 1.5184757968572182,
|
| 1297 |
+
"learning_rate": 3.0046762246164608e-06,
|
| 1298 |
+
"loss": 0.6382,
|
| 1299 |
+
"step": 1660
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"epoch": 1.4844444444444445,
|
| 1303 |
+
"grad_norm": 1.9260639142140834,
|
| 1304 |
+
"learning_rate": 2.979321108333799e-06,
|
| 1305 |
+
"loss": 0.6097,
|
| 1306 |
+
"step": 1670
|
| 1307 |
+
},
|
| 1308 |
+
{
|
| 1309 |
+
"epoch": 1.4933333333333334,
|
| 1310 |
+
"grad_norm": 1.741956992068052,
|
| 1311 |
+
"learning_rate": 2.953914702034054e-06,
|
| 1312 |
+
"loss": 0.6319,
|
| 1313 |
+
"step": 1680
|
| 1314 |
+
},
|
| 1315 |
+
{
|
| 1316 |
+
"epoch": 1.5022222222222221,
|
| 1317 |
+
"grad_norm": 1.595093207157502,
|
| 1318 |
+
"learning_rate": 2.928459724343613e-06,
|
| 1319 |
+
"loss": 0.6747,
|
| 1320 |
+
"step": 1690
|
| 1321 |
+
},
|
| 1322 |
+
{
|
| 1323 |
+
"epoch": 1.511111111111111,
|
| 1324 |
+
"grad_norm": 1.7200717117012048,
|
| 1325 |
+
"learning_rate": 2.9029588990862717e-06,
|
| 1326 |
+
"loss": 0.6537,
|
| 1327 |
+
"step": 1700
|
| 1328 |
+
},
|
| 1329 |
+
{
|
| 1330 |
+
"epoch": 1.511111111111111,
|
| 1331 |
+
"eval_loss": 0.7793934941291809,
|
| 1332 |
+
"eval_runtime": 38.0687,
|
| 1333 |
+
"eval_samples_per_second": 52.537,
|
| 1334 |
+
"eval_steps_per_second": 6.567,
|
| 1335 |
+
"step": 1700
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 1.52,
|
| 1339 |
+
"grad_norm": 1.6792977916911906,
|
| 1340 |
+
"learning_rate": 2.8774149549917697e-06,
|
| 1341 |
+
"loss": 0.6332,
|
| 1342 |
+
"step": 1710
|
| 1343 |
+
},
|
| 1344 |
+
{
|
| 1345 |
+
"epoch": 1.528888888888889,
|
| 1346 |
+
"grad_norm": 1.7336128902509544,
|
| 1347 |
+
"learning_rate": 2.8518306254037996e-06,
|
| 1348 |
+
"loss": 0.6462,
|
| 1349 |
+
"step": 1720
|
| 1350 |
+
},
|
| 1351 |
+
{
|
| 1352 |
+
"epoch": 1.537777777777778,
|
| 1353 |
+
"grad_norm": 1.6738874310796588,
|
| 1354 |
+
"learning_rate": 2.82620864798753e-06,
|
| 1355 |
+
"loss": 0.6446,
|
| 1356 |
+
"step": 1730
|
| 1357 |
+
},
|
| 1358 |
+
{
|
| 1359 |
+
"epoch": 1.5466666666666666,
|
| 1360 |
+
"grad_norm": 1.5853846000954395,
|
| 1361 |
+
"learning_rate": 2.800551764436652e-06,
|
| 1362 |
+
"loss": 0.6864,
|
| 1363 |
+
"step": 1740
|
| 1364 |
+
},
|
| 1365 |
+
{
|
| 1366 |
+
"epoch": 1.5555555555555556,
|
| 1367 |
+
"grad_norm": 1.7102684215364048,
|
| 1368 |
+
"learning_rate": 2.774862720180008e-06,
|
| 1369 |
+
"loss": 0.6244,
|
| 1370 |
+
"step": 1750
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 1.5644444444444443,
|
| 1374 |
+
"grad_norm": 1.6441239452770726,
|
| 1375 |
+
"learning_rate": 2.749144264087814e-06,
|
| 1376 |
+
"loss": 0.6183,
|
| 1377 |
+
"step": 1760
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 1.5733333333333333,
|
| 1381 |
+
"grad_norm": 1.8848908060309273,
|
| 1382 |
+
"learning_rate": 2.7233991481775173e-06,
|
| 1383 |
+
"loss": 0.6524,
|
| 1384 |
+
"step": 1770
|
| 1385 |
+
},
|
| 1386 |
+
{
|
| 1387 |
+
"epoch": 1.5822222222222222,
|
| 1388 |
+
"grad_norm": 1.5767138461588817,
|
| 1389 |
+
"learning_rate": 2.697630127319312e-06,
|
| 1390 |
+
"loss": 0.6415,
|
| 1391 |
+
"step": 1780
|
| 1392 |
+
},
|
| 1393 |
+
{
|
| 1394 |
+
"epoch": 1.5911111111111111,
|
| 1395 |
+
"grad_norm": 1.6578116610765519,
|
| 1396 |
+
"learning_rate": 2.6718399589413533e-06,
|
| 1397 |
+
"loss": 0.6488,
|
| 1398 |
+
"step": 1790
|
| 1399 |
+
},
|
| 1400 |
+
{
|
| 1401 |
+
"epoch": 1.6,
|
| 1402 |
+
"grad_norm": 1.6463146375379087,
|
| 1403 |
+
"learning_rate": 2.6460314027347002e-06,
|
| 1404 |
+
"loss": 0.6626,
|
| 1405 |
+
"step": 1800
|
| 1406 |
+
},
|
| 1407 |
+
{
|
| 1408 |
+
"epoch": 1.6,
|
| 1409 |
+
"eval_loss": 0.7779668569564819,
|
| 1410 |
+
"eval_runtime": 38.0224,
|
| 1411 |
+
"eval_samples_per_second": 52.601,
|
| 1412 |
+
"eval_steps_per_second": 6.575,
|
| 1413 |
+
"step": 1800
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"epoch": 1.608888888888889,
|
| 1417 |
+
"grad_norm": 1.3794992178377827,
|
| 1418 |
+
"learning_rate": 2.6202072203580098e-06,
|
| 1419 |
+
"loss": 0.6213,
|
| 1420 |
+
"step": 1810
|
| 1421 |
+
},
|
| 1422 |
+
{
|
| 1423 |
+
"epoch": 1.6177777777777778,
|
| 1424 |
+
"grad_norm": 1.6547672801771742,
|
| 1425 |
+
"learning_rate": 2.594370175142029e-06,
|
| 1426 |
+
"loss": 0.622,
|
| 1427 |
+
"step": 1820
|
| 1428 |
+
},
|
| 1429 |
+
{
|
| 1430 |
+
"epoch": 1.6266666666666667,
|
| 1431 |
+
"grad_norm": 1.8131058123768224,
|
| 1432 |
+
"learning_rate": 2.5685230317938946e-06,
|
| 1433 |
+
"loss": 0.6115,
|
| 1434 |
+
"step": 1830
|
| 1435 |
+
},
|
| 1436 |
+
{
|
| 1437 |
+
"epoch": 1.6355555555555554,
|
| 1438 |
+
"grad_norm": 1.5043497534471073,
|
| 1439 |
+
"learning_rate": 2.542668556101305e-06,
|
| 1440 |
+
"loss": 0.6278,
|
| 1441 |
+
"step": 1840
|
| 1442 |
+
},
|
| 1443 |
+
{
|
| 1444 |
+
"epoch": 1.6444444444444444,
|
| 1445 |
+
"grad_norm": 1.6388736348728028,
|
| 1446 |
+
"learning_rate": 2.516809514636556e-06,
|
| 1447 |
+
"loss": 0.6419,
|
| 1448 |
+
"step": 1850
|
| 1449 |
+
},
|
| 1450 |
+
{
|
| 1451 |
+
"epoch": 1.6533333333333333,
|
| 1452 |
+
"grad_norm": 1.6660885474749705,
|
| 1453 |
+
"learning_rate": 2.4909486744605105e-06,
|
| 1454 |
+
"loss": 0.6158,
|
| 1455 |
+
"step": 1860
|
| 1456 |
+
},
|
| 1457 |
+
{
|
| 1458 |
+
"epoch": 1.6622222222222223,
|
| 1459 |
+
"grad_norm": 1.7074374325187731,
|
| 1460 |
+
"learning_rate": 2.4650888028264993e-06,
|
| 1461 |
+
"loss": 0.6404,
|
| 1462 |
+
"step": 1870
|
| 1463 |
+
},
|
| 1464 |
+
{
|
| 1465 |
+
"epoch": 1.6711111111111112,
|
| 1466 |
+
"grad_norm": 1.5200201087278384,
|
| 1467 |
+
"learning_rate": 2.439232666884216e-06,
|
| 1468 |
+
"loss": 0.6334,
|
| 1469 |
+
"step": 1880
|
| 1470 |
+
},
|
| 1471 |
+
{
|
| 1472 |
+
"epoch": 1.6800000000000002,
|
| 1473 |
+
"grad_norm": 1.7294919605993466,
|
| 1474 |
+
"learning_rate": 2.413383033383614e-06,
|
| 1475 |
+
"loss": 0.6486,
|
| 1476 |
+
"step": 1890
|
| 1477 |
+
},
|
| 1478 |
+
{
|
| 1479 |
+
"epoch": 1.6888888888888889,
|
| 1480 |
+
"grad_norm": 1.6336612869980456,
|
| 1481 |
+
"learning_rate": 2.3875426683788497e-06,
|
| 1482 |
+
"loss": 0.6116,
|
| 1483 |
+
"step": 1900
|
| 1484 |
+
},
|
| 1485 |
+
{
|
| 1486 |
+
"epoch": 1.6888888888888889,
|
| 1487 |
+
"eval_loss": 0.7765544056892395,
|
| 1488 |
+
"eval_runtime": 37.883,
|
| 1489 |
+
"eval_samples_per_second": 52.794,
|
| 1490 |
+
"eval_steps_per_second": 6.599,
|
| 1491 |
+
"step": 1900
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"epoch": 1.6977777777777778,
|
| 1495 |
+
"grad_norm": 1.709115790338184,
|
| 1496 |
+
"learning_rate": 2.3617143369322988e-06,
|
| 1497 |
+
"loss": 0.6252,
|
| 1498 |
+
"step": 1910
|
| 1499 |
+
},
|
| 1500 |
+
{
|
| 1501 |
+
"epoch": 1.7066666666666666,
|
| 1502 |
+
"grad_norm": 1.7821417246615834,
|
| 1503 |
+
"learning_rate": 2.33590080281868e-06,
|
| 1504 |
+
"loss": 0.6107,
|
| 1505 |
+
"step": 1920
|
| 1506 |
+
},
|
| 1507 |
+
{
|
| 1508 |
+
"epoch": 1.7155555555555555,
|
| 1509 |
+
"grad_norm": 1.6445009506847397,
|
| 1510 |
+
"learning_rate": 2.310104828229313e-06,
|
| 1511 |
+
"loss": 0.6142,
|
| 1512 |
+
"step": 1930
|
| 1513 |
+
},
|
| 1514 |
+
{
|
| 1515 |
+
"epoch": 1.7244444444444444,
|
| 1516 |
+
"grad_norm": 1.841236220247559,
|
| 1517 |
+
"learning_rate": 2.2843291734765544e-06,
|
| 1518 |
+
"loss": 0.6502,
|
| 1519 |
+
"step": 1940
|
| 1520 |
+
},
|
| 1521 |
+
{
|
| 1522 |
+
"epoch": 1.7333333333333334,
|
| 1523 |
+
"grad_norm": 1.842694284367171,
|
| 1524 |
+
"learning_rate": 2.2585765966984236e-06,
|
| 1525 |
+
"loss": 0.674,
|
| 1526 |
+
"step": 1950
|
| 1527 |
+
},
|
| 1528 |
+
{
|
| 1529 |
+
"epoch": 1.7422222222222223,
|
| 1530 |
+
"grad_norm": 1.8090827021490723,
|
| 1531 |
+
"learning_rate": 2.2328498535634704e-06,
|
| 1532 |
+
"loss": 0.6175,
|
| 1533 |
+
"step": 1960
|
| 1534 |
+
},
|
| 1535 |
+
{
|
| 1536 |
+
"epoch": 1.751111111111111,
|
| 1537 |
+
"grad_norm": 1.6878272228854192,
|
| 1538 |
+
"learning_rate": 2.2071516969758988e-06,
|
| 1539 |
+
"loss": 0.6231,
|
| 1540 |
+
"step": 1970
|
| 1541 |
+
},
|
| 1542 |
+
{
|
| 1543 |
+
"epoch": 1.76,
|
| 1544 |
+
"grad_norm": 1.9731653412399757,
|
| 1545 |
+
"learning_rate": 2.181484876780996e-06,
|
| 1546 |
+
"loss": 0.629,
|
| 1547 |
+
"step": 1980
|
| 1548 |
+
},
|
| 1549 |
+
{
|
| 1550 |
+
"epoch": 1.7688888888888887,
|
| 1551 |
+
"grad_norm": 1.6667636315286483,
|
| 1552 |
+
"learning_rate": 2.1558521394708793e-06,
|
| 1553 |
+
"loss": 0.6658,
|
| 1554 |
+
"step": 1990
|
| 1555 |
+
},
|
| 1556 |
+
{
|
| 1557 |
+
"epoch": 1.7777777777777777,
|
| 1558 |
+
"grad_norm": 1.7254699126772677,
|
| 1559 |
+
"learning_rate": 2.1302562278906106e-06,
|
| 1560 |
+
"loss": 0.6327,
|
| 1561 |
+
"step": 2000
|
| 1562 |
+
},
|
| 1563 |
+
{
|
| 1564 |
+
"epoch": 1.7777777777777777,
|
| 1565 |
+
"eval_loss": 0.7731255292892456,
|
| 1566 |
+
"eval_runtime": 38.4418,
|
| 1567 |
+
"eval_samples_per_second": 52.027,
|
| 1568 |
+
"eval_steps_per_second": 6.503,
|
| 1569 |
+
"step": 2000
|
| 1570 |
+
}
|
| 1571 |
+
],
|
| 1572 |
+
"logging_steps": 10,
|
| 1573 |
+
"max_steps": 3375,
|
| 1574 |
+
"num_input_tokens_seen": 0,
|
| 1575 |
+
"num_train_epochs": 3,
|
| 1576 |
+
"save_steps": 1000,
|
| 1577 |
+
"stateful_callbacks": {
|
| 1578 |
+
"TrainerControl": {
|
| 1579 |
+
"args": {
|
| 1580 |
+
"should_epoch_stop": false,
|
| 1581 |
+
"should_evaluate": false,
|
| 1582 |
+
"should_log": false,
|
| 1583 |
+
"should_save": true,
|
| 1584 |
+
"should_training_stop": false
|
| 1585 |
+
},
|
| 1586 |
+
"attributes": {}
|
| 1587 |
+
}
|
| 1588 |
+
},
|
| 1589 |
+
"total_flos": 102798860353536.0,
|
| 1590 |
+
"train_batch_size": 1,
|
| 1591 |
+
"trial_name": null,
|
| 1592 |
+
"trial_params": null
|
| 1593 |
+
}
|
checkpoint-2000/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12abd2c91b01a822d41c856433df3965960b85daf3f009e4554cb8f02f3ee956
|
| 3 |
+
size 7160
|
checkpoint-2000/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2000/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-3000/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-3000/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 18944,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 28,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 4,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"rope_theta": 1000000.0,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.46.1",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 152064
|
| 29 |
+
}
|
checkpoint-3000/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.46.1"
|
| 14 |
+
}
|
checkpoint-3000/global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a76883af89258bb455bb0b4e591506c4e0a0489e308448b2b42f24d193296f2
|
| 3 |
+
size 11423430028
|