w3en2g commited on
Commit
88166c0
·
verified ·
1 Parent(s): e4d7537

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. README.md +98 -0
  3. added_tokens.json +24 -0
  4. all_results.json +12 -0
  5. checkpoint-2000/added_tokens.json +24 -0
  6. checkpoint-2000/config.json +29 -0
  7. checkpoint-2000/generation_config.json +14 -0
  8. checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-2000/global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-2000/global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-2000/global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-2000/global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-2000/global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  14. checkpoint-2000/global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  15. checkpoint-2000/global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  16. checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  21. checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  22. checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  23. checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  24. checkpoint-2000/latest +1 -0
  25. checkpoint-2000/merges.txt +0 -0
  26. checkpoint-2000/model-00001-of-00004.safetensors +3 -0
  27. checkpoint-2000/model-00002-of-00004.safetensors +3 -0
  28. checkpoint-2000/model-00003-of-00004.safetensors +3 -0
  29. checkpoint-2000/model-00004-of-00004.safetensors +3 -0
  30. checkpoint-2000/model.safetensors.index.json +346 -0
  31. checkpoint-2000/rng_state_0.pth +3 -0
  32. checkpoint-2000/rng_state_1.pth +3 -0
  33. checkpoint-2000/rng_state_2.pth +3 -0
  34. checkpoint-2000/rng_state_3.pth +3 -0
  35. checkpoint-2000/rng_state_4.pth +3 -0
  36. checkpoint-2000/rng_state_5.pth +3 -0
  37. checkpoint-2000/rng_state_6.pth +3 -0
  38. checkpoint-2000/rng_state_7.pth +3 -0
  39. checkpoint-2000/scheduler.pt +3 -0
  40. checkpoint-2000/special_tokens_map.json +31 -0
  41. checkpoint-2000/tokenizer.json +3 -0
  42. checkpoint-2000/tokenizer_config.json +208 -0
  43. checkpoint-2000/trainer_state.json +1593 -0
  44. checkpoint-2000/training_args.bin +3 -0
  45. checkpoint-2000/vocab.json +0 -0
  46. checkpoint-2000/zero_to_fp32.py +604 -0
  47. checkpoint-3000/added_tokens.json +24 -0
  48. checkpoint-3000/config.json +29 -0
  49. checkpoint-3000/generation_config.json +14 -0
  50. checkpoint-3000/global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-2000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Qwen2.5-7B-Instruct
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Qwen2.5-7B-Instruct
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the self_ask_train_data dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8082
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-06
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 8
46
+ - gradient_accumulation_steps: 2
47
+ - total_train_batch_size: 16
48
+ - total_eval_batch_size: 8
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: cosine
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 3.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.8711 | 0.0889 | 100 | 0.8548 |
59
+ | 0.8052 | 0.1778 | 200 | 0.8143 |
60
+ | 0.8071 | 0.2667 | 300 | 0.8015 |
61
+ | 0.7912 | 0.3556 | 400 | 0.7962 |
62
+ | 0.8086 | 0.4444 | 500 | 0.7914 |
63
+ | 0.7614 | 0.5333 | 600 | 0.7859 |
64
+ | 0.7758 | 0.6222 | 700 | 0.7828 |
65
+ | 0.8026 | 0.7111 | 800 | 0.7794 |
66
+ | 0.8 | 0.8 | 900 | 0.7757 |
67
+ | 0.7568 | 0.8889 | 1000 | 0.7740 |
68
+ | 0.7954 | 0.9778 | 1100 | 0.7712 |
69
+ | 0.6518 | 1.0667 | 1200 | 0.7852 |
70
+ | 0.6344 | 1.1556 | 1300 | 0.7862 |
71
+ | 0.6181 | 1.2444 | 1400 | 0.7869 |
72
+ | 0.6511 | 1.3333 | 1500 | 0.7798 |
73
+ | 0.6341 | 1.4222 | 1600 | 0.7812 |
74
+ | 0.6537 | 1.5111 | 1700 | 0.7794 |
75
+ | 0.6626 | 1.6 | 1800 | 0.7780 |
76
+ | 0.6116 | 1.6889 | 1900 | 0.7766 |
77
+ | 0.6327 | 1.7778 | 2000 | 0.7731 |
78
+ | 0.6168 | 1.8667 | 2100 | 0.7714 |
79
+ | 0.6354 | 1.9556 | 2200 | 0.7699 |
80
+ | 0.5238 | 2.0444 | 2300 | 0.8105 |
81
+ | 0.4994 | 2.1333 | 2400 | 0.8090 |
82
+ | 0.481 | 2.2222 | 2500 | 0.8098 |
83
+ | 0.4976 | 2.3111 | 2600 | 0.8098 |
84
+ | 0.5061 | 2.4 | 2700 | 0.8085 |
85
+ | 0.5184 | 2.4889 | 2800 | 0.8096 |
86
+ | 0.5024 | 2.5778 | 2900 | 0.8094 |
87
+ | 0.5086 | 2.6667 | 3000 | 0.8081 |
88
+ | 0.5008 | 2.7556 | 3100 | 0.8081 |
89
+ | 0.5021 | 2.8444 | 3200 | 0.8082 |
90
+ | 0.4808 | 2.9333 | 3300 | 0.8082 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.46.1
96
+ - Pytorch 2.5.1+cu124
97
+ - Datasets 2.21.0
98
+ - Tokenizers 0.20.3
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.8082394003868103,
4
+ "eval_runtime": 38.2561,
5
+ "eval_samples_per_second": 52.279,
6
+ "eval_steps_per_second": 6.535,
7
+ "total_flos": 173592713248768.0,
8
+ "train_loss": 0.6526138088791459,
9
+ "train_runtime": 5605.6539,
10
+ "train_samples_per_second": 9.633,
11
+ "train_steps_per_second": 0.602
12
+ }
checkpoint-2000/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-2000/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-2000/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
checkpoint-2000/global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ec4963aefde519bfa290df416855fdc601c9985cc7340e1ac53cb70462f0f63
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:064bde90bac96d3ae0335a945eb1eb1fb6923966b8bdd7b0f98d6e9f533a9063
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ba6d0fa5d670bf71d22371e3ae39f76aeee315d30bf1f50f5f27a468968caea
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfb3a5d0aa42bf46113213b5ea8702920360d047cb22772bb2afdf172b623fae
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fe870c29b69fc1be568db01d80f42898cd0aa51cab50eb94b5736b7acf7f594
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b74506576e2c6904d2179eed1293f617bdf98f1a8a6e35c4040d03eaad28c1c
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a15c6a39b6c79dd436862725da9802df29b9e8d11ef41b0c52c8a4d055454e
3
+ size 11423430028
checkpoint-2000/global_step2000/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d41acc996c67d4b1668077f12ae9f29d5b0cc7cead1ed3dd45e144dc2cbe7694
3
+ size 11423430028
checkpoint-2000/global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24b959dba227c4ddf656d91cd1c38459188fe407c0509cc9a4cb8727585f9603
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56f48d4df025ede26974d4018e3e7d036f2c68f0a089fdb6bc322e93c1ac436
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75d30916d5f48e6cbe0daf8b4323cb578b19123f8152a16b71502fe062eec64b
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:641b0d745bffa34b6dedda7bbb1812e06d2207af837e1c4d821dd18a24c4f607
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8979044e5d7e6e9da13496613a171684c603fb1633c7d65ba939960e9cad5775
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18e06f547a53cb0b67d9fd2cbaaf1f4e8d3065a3d0fb22684856e2fe26bd2ef7
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b00790723f4f010faf5efae4eca7d12a5ab043416eb039b5364193bdd43f0e70
3
+ size 168277
checkpoint-2000/global_step2000/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:434e832401e21f7e825d2656338a6ed1935713151b690304c82065435d60aa8a
3
+ size 168277
checkpoint-2000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
checkpoint-2000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce61da88da5accc0db8f38ba80f8c1eccaeaed122cc846cd4689d5a9130071f5
3
+ size 4877660776
checkpoint-2000/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69f630b9731bc146d762a5f9046afa214eddbcbbd2996fca1827fe94968e2416
3
+ size 4932751008
checkpoint-2000/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3967a7a0bb19277e6d0d686b61337c0287eeaa27189a4fddc56ba1a24814f378
3
+ size 4330865200
checkpoint-2000/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b2f1d559070bb819a86bde59ed06d6746d521439dd06c165e7c333e7042cd72
3
+ size 1089994880
checkpoint-2000/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
checkpoint-2000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ffbd38f2626212a6ee67166039a4e916fc424a3ef78a112b81ecba34404f3d1
3
+ size 15984
checkpoint-2000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:761cc4f38afe955241d2348fca72dd9656d9ebe889e2a62241d58bd4bc402ab3
3
+ size 15984
checkpoint-2000/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df49e54f3e60ca7b97616f5b3ec776cb88dd34df15356bfe0565e073195eabb5
3
+ size 15984
checkpoint-2000/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a34a02b568d14f0c9040613f420faf5a53edb4c287e30c4c7c5812d2c661932
3
+ size 15984
checkpoint-2000/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb893a42ae156daa2dddcfcf2ef773c576ec3c274aaf9e5a216bd1d659a190b
3
+ size 15984
checkpoint-2000/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b966d4dca42c479a7d82dd6ce6a32209ee7e19048adffff6ca6d5cbfafe89c52
3
+ size 15984
checkpoint-2000/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfdec22eeccd05416d2a00acd09a775df394351b2aa4e3b1d32df8f7f4a8b07f
3
+ size 15984
checkpoint-2000/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89e852c764f530a6e44842564809b78387dfa34f7ec6fcece34742866c5d452e
3
+ size 15984
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc6c2bcd9b76d33bd8c89a00cca67d819437a66a3d71f03aee9d963b3a1b6c2c
3
+ size 1064
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-2000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,1593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.7777777777777777,
5
+ "eval_steps": 100,
6
+ "global_step": 2000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008888888888888889,
13
+ "grad_norm": 6.312672588322296,
14
+ "learning_rate": 1.4792899408284025e-07,
15
+ "loss": 1.1997,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.017777777777777778,
20
+ "grad_norm": 6.5395437094474875,
21
+ "learning_rate": 2.958579881656805e-07,
22
+ "loss": 1.2188,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.02666666666666667,
27
+ "grad_norm": 5.051656620162693,
28
+ "learning_rate": 4.4378698224852073e-07,
29
+ "loss": 1.1654,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.035555555555555556,
34
+ "grad_norm": 3.245773084025693,
35
+ "learning_rate": 5.91715976331361e-07,
36
+ "loss": 1.0942,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.044444444444444446,
41
+ "grad_norm": 2.594184571301331,
42
+ "learning_rate": 7.396449704142013e-07,
43
+ "loss": 1.0498,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05333333333333334,
48
+ "grad_norm": 2.168963351286361,
49
+ "learning_rate": 8.875739644970415e-07,
50
+ "loss": 0.9403,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.06222222222222222,
55
+ "grad_norm": 1.9004139854270057,
56
+ "learning_rate": 1.0355029585798817e-06,
57
+ "loss": 0.9099,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.07111111111111111,
62
+ "grad_norm": 2.2242455117026494,
63
+ "learning_rate": 1.183431952662722e-06,
64
+ "loss": 0.8998,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.08,
69
+ "grad_norm": 1.8519949378838332,
70
+ "learning_rate": 1.3313609467455623e-06,
71
+ "loss": 0.859,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08888888888888889,
76
+ "grad_norm": 1.8728553263645957,
77
+ "learning_rate": 1.4792899408284026e-06,
78
+ "loss": 0.8711,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.08888888888888889,
83
+ "eval_loss": 0.8548257946968079,
84
+ "eval_runtime": 38.267,
85
+ "eval_samples_per_second": 52.264,
86
+ "eval_steps_per_second": 6.533,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 0.09777777777777778,
91
+ "grad_norm": 2.116764307544036,
92
+ "learning_rate": 1.6272189349112426e-06,
93
+ "loss": 0.8557,
94
+ "step": 110
95
+ },
96
+ {
97
+ "epoch": 0.10666666666666667,
98
+ "grad_norm": 2.0364313595247467,
99
+ "learning_rate": 1.775147928994083e-06,
100
+ "loss": 0.8619,
101
+ "step": 120
102
+ },
103
+ {
104
+ "epoch": 0.11555555555555555,
105
+ "grad_norm": 1.7761221870002313,
106
+ "learning_rate": 1.9230769230769234e-06,
107
+ "loss": 0.86,
108
+ "step": 130
109
+ },
110
+ {
111
+ "epoch": 0.12444444444444444,
112
+ "grad_norm": 1.8902384905200484,
113
+ "learning_rate": 2.0710059171597635e-06,
114
+ "loss": 0.8483,
115
+ "step": 140
116
+ },
117
+ {
118
+ "epoch": 0.13333333333333333,
119
+ "grad_norm": 2.0970800465534793,
120
+ "learning_rate": 2.2189349112426035e-06,
121
+ "loss": 0.8841,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.14222222222222222,
126
+ "grad_norm": 2.0388812214422005,
127
+ "learning_rate": 2.366863905325444e-06,
128
+ "loss": 0.8491,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.1511111111111111,
133
+ "grad_norm": 1.9949400049388208,
134
+ "learning_rate": 2.5147928994082845e-06,
135
+ "loss": 0.8252,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.16,
140
+ "grad_norm": 1.7986729179125904,
141
+ "learning_rate": 2.6627218934911246e-06,
142
+ "loss": 0.8345,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.1688888888888889,
147
+ "grad_norm": 1.8870696385512356,
148
+ "learning_rate": 2.8106508875739646e-06,
149
+ "loss": 0.8259,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.17777777777777778,
154
+ "grad_norm": 1.8573694639357368,
155
+ "learning_rate": 2.958579881656805e-06,
156
+ "loss": 0.8052,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.17777777777777778,
161
+ "eval_loss": 0.8143225312232971,
162
+ "eval_runtime": 37.9982,
163
+ "eval_samples_per_second": 52.634,
164
+ "eval_steps_per_second": 6.579,
165
+ "step": 200
166
+ },
167
+ {
168
+ "epoch": 0.18666666666666668,
169
+ "grad_norm": 1.8655947177959404,
170
+ "learning_rate": 3.106508875739645e-06,
171
+ "loss": 0.827,
172
+ "step": 210
173
+ },
174
+ {
175
+ "epoch": 0.19555555555555557,
176
+ "grad_norm": 1.870936582770945,
177
+ "learning_rate": 3.2544378698224853e-06,
178
+ "loss": 0.813,
179
+ "step": 220
180
+ },
181
+ {
182
+ "epoch": 0.20444444444444446,
183
+ "grad_norm": 2.109320545375679,
184
+ "learning_rate": 3.4023668639053257e-06,
185
+ "loss": 0.8174,
186
+ "step": 230
187
+ },
188
+ {
189
+ "epoch": 0.21333333333333335,
190
+ "grad_norm": 1.8097321542077869,
191
+ "learning_rate": 3.550295857988166e-06,
192
+ "loss": 0.8182,
193
+ "step": 240
194
+ },
195
+ {
196
+ "epoch": 0.2222222222222222,
197
+ "grad_norm": 1.728199611021706,
198
+ "learning_rate": 3.6982248520710063e-06,
199
+ "loss": 0.8123,
200
+ "step": 250
201
+ },
202
+ {
203
+ "epoch": 0.2311111111111111,
204
+ "grad_norm": 2.0315555925984348,
205
+ "learning_rate": 3.846153846153847e-06,
206
+ "loss": 0.7728,
207
+ "step": 260
208
+ },
209
+ {
210
+ "epoch": 0.24,
211
+ "grad_norm": 1.5850711075399915,
212
+ "learning_rate": 3.9940828402366864e-06,
213
+ "loss": 0.7917,
214
+ "step": 270
215
+ },
216
+ {
217
+ "epoch": 0.24888888888888888,
218
+ "grad_norm": 1.927987824759959,
219
+ "learning_rate": 4.142011834319527e-06,
220
+ "loss": 0.8142,
221
+ "step": 280
222
+ },
223
+ {
224
+ "epoch": 0.2577777777777778,
225
+ "grad_norm": 1.9163193176432178,
226
+ "learning_rate": 4.289940828402367e-06,
227
+ "loss": 0.8177,
228
+ "step": 290
229
+ },
230
+ {
231
+ "epoch": 0.26666666666666666,
232
+ "grad_norm": 1.9493054796009528,
233
+ "learning_rate": 4.437869822485207e-06,
234
+ "loss": 0.8071,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 0.26666666666666666,
239
+ "eval_loss": 0.8015236854553223,
240
+ "eval_runtime": 38.0122,
241
+ "eval_samples_per_second": 52.615,
242
+ "eval_steps_per_second": 6.577,
243
+ "step": 300
244
+ },
245
+ {
246
+ "epoch": 0.27555555555555555,
247
+ "grad_norm": 1.7023378433784926,
248
+ "learning_rate": 4.5857988165680475e-06,
249
+ "loss": 0.8152,
250
+ "step": 310
251
+ },
252
+ {
253
+ "epoch": 0.28444444444444444,
254
+ "grad_norm": 1.8979776132841102,
255
+ "learning_rate": 4.733727810650888e-06,
256
+ "loss": 0.8301,
257
+ "step": 320
258
+ },
259
+ {
260
+ "epoch": 0.29333333333333333,
261
+ "grad_norm": 1.975097152658989,
262
+ "learning_rate": 4.8816568047337285e-06,
263
+ "loss": 0.8332,
264
+ "step": 330
265
+ },
266
+ {
267
+ "epoch": 0.3022222222222222,
268
+ "grad_norm": 1.8218939536712146,
269
+ "learning_rate": 4.99999464967688e-06,
270
+ "loss": 0.8286,
271
+ "step": 340
272
+ },
273
+ {
274
+ "epoch": 0.3111111111111111,
275
+ "grad_norm": 1.8977171195446734,
276
+ "learning_rate": 4.999807390772256e-06,
277
+ "loss": 0.8209,
278
+ "step": 350
279
+ },
280
+ {
281
+ "epoch": 0.32,
282
+ "grad_norm": 1.880983857135489,
283
+ "learning_rate": 4.999352638611963e-06,
284
+ "loss": 0.8311,
285
+ "step": 360
286
+ },
287
+ {
288
+ "epoch": 0.3288888888888889,
289
+ "grad_norm": 2.085715913698874,
290
+ "learning_rate": 4.998630441857007e-06,
291
+ "loss": 0.8194,
292
+ "step": 370
293
+ },
294
+ {
295
+ "epoch": 0.3377777777777778,
296
+ "grad_norm": 1.8193588799474414,
297
+ "learning_rate": 4.997640877786446e-06,
298
+ "loss": 0.7961,
299
+ "step": 380
300
+ },
301
+ {
302
+ "epoch": 0.3466666666666667,
303
+ "grad_norm": 1.7395847960563042,
304
+ "learning_rate": 4.996384052289124e-06,
305
+ "loss": 0.8235,
306
+ "step": 390
307
+ },
308
+ {
309
+ "epoch": 0.35555555555555557,
310
+ "grad_norm": 1.7517335960292617,
311
+ "learning_rate": 4.994860099852339e-06,
312
+ "loss": 0.7912,
313
+ "step": 400
314
+ },
315
+ {
316
+ "epoch": 0.35555555555555557,
317
+ "eval_loss": 0.7962385416030884,
318
+ "eval_runtime": 38.0506,
319
+ "eval_samples_per_second": 52.562,
320
+ "eval_steps_per_second": 6.57,
321
+ "step": 400
322
+ },
323
+ {
324
+ "epoch": 0.36444444444444446,
325
+ "grad_norm": 1.7751508270993985,
326
+ "learning_rate": 4.993069183547456e-06,
327
+ "loss": 0.7956,
328
+ "step": 410
329
+ },
330
+ {
331
+ "epoch": 0.37333333333333335,
332
+ "grad_norm": 1.905940982272453,
333
+ "learning_rate": 4.991011495012451e-06,
334
+ "loss": 0.8383,
335
+ "step": 420
336
+ },
337
+ {
338
+ "epoch": 0.38222222222222224,
339
+ "grad_norm": 1.9604410876662892,
340
+ "learning_rate": 4.98868725443141e-06,
341
+ "loss": 0.8427,
342
+ "step": 430
343
+ },
344
+ {
345
+ "epoch": 0.39111111111111113,
346
+ "grad_norm": 1.8801968456938927,
347
+ "learning_rate": 4.986096710510968e-06,
348
+ "loss": 0.8253,
349
+ "step": 440
350
+ },
351
+ {
352
+ "epoch": 0.4,
353
+ "grad_norm": 1.834581689663337,
354
+ "learning_rate": 4.9832401404536915e-06,
355
+ "loss": 0.8211,
356
+ "step": 450
357
+ },
358
+ {
359
+ "epoch": 0.4088888888888889,
360
+ "grad_norm": 1.816476724466639,
361
+ "learning_rate": 4.980117849928419e-06,
362
+ "loss": 0.792,
363
+ "step": 460
364
+ },
365
+ {
366
+ "epoch": 0.4177777777777778,
367
+ "grad_norm": 1.7561196396819305,
368
+ "learning_rate": 4.976730173037556e-06,
369
+ "loss": 0.8199,
370
+ "step": 470
371
+ },
372
+ {
373
+ "epoch": 0.4266666666666667,
374
+ "grad_norm": 1.883523346070099,
375
+ "learning_rate": 4.973077472281319e-06,
376
+ "loss": 0.8085,
377
+ "step": 480
378
+ },
379
+ {
380
+ "epoch": 0.43555555555555553,
381
+ "grad_norm": 1.8002160041857591,
382
+ "learning_rate": 4.969160138518946e-06,
383
+ "loss": 0.7981,
384
+ "step": 490
385
+ },
386
+ {
387
+ "epoch": 0.4444444444444444,
388
+ "grad_norm": 1.8807969403322338,
389
+ "learning_rate": 4.964978590926879e-06,
390
+ "loss": 0.8086,
391
+ "step": 500
392
+ },
393
+ {
394
+ "epoch": 0.4444444444444444,
395
+ "eval_loss": 0.7913944721221924,
396
+ "eval_runtime": 37.9142,
397
+ "eval_samples_per_second": 52.751,
398
+ "eval_steps_per_second": 6.594,
399
+ "step": 500
400
+ },
401
+ {
402
+ "epoch": 0.4533333333333333,
403
+ "grad_norm": 1.7162663123083326,
404
+ "learning_rate": 4.960533276953902e-06,
405
+ "loss": 0.8121,
406
+ "step": 510
407
+ },
408
+ {
409
+ "epoch": 0.4622222222222222,
410
+ "grad_norm": 1.8966249612321189,
411
+ "learning_rate": 4.955824672273265e-06,
412
+ "loss": 0.7929,
413
+ "step": 520
414
+ },
415
+ {
416
+ "epoch": 0.4711111111111111,
417
+ "grad_norm": 1.9877589179045125,
418
+ "learning_rate": 4.950853280731785e-06,
419
+ "loss": 0.8092,
420
+ "step": 530
421
+ },
422
+ {
423
+ "epoch": 0.48,
424
+ "grad_norm": 1.6886441919837933,
425
+ "learning_rate": 4.945619634295929e-06,
426
+ "loss": 0.8393,
427
+ "step": 540
428
+ },
429
+ {
430
+ "epoch": 0.4888888888888889,
431
+ "grad_norm": 1.6732855356580696,
432
+ "learning_rate": 4.940124292994895e-06,
433
+ "loss": 0.8036,
434
+ "step": 550
435
+ },
436
+ {
437
+ "epoch": 0.49777777777777776,
438
+ "grad_norm": 1.8728351825828837,
439
+ "learning_rate": 4.9343678448606816e-06,
440
+ "loss": 0.8118,
441
+ "step": 560
442
+ },
443
+ {
444
+ "epoch": 0.5066666666666667,
445
+ "grad_norm": 1.7910848529169285,
446
+ "learning_rate": 4.928350905865165e-06,
447
+ "loss": 0.7975,
448
+ "step": 570
449
+ },
450
+ {
451
+ "epoch": 0.5155555555555555,
452
+ "grad_norm": 1.8879257679795278,
453
+ "learning_rate": 4.92207411985419e-06,
454
+ "loss": 0.8133,
455
+ "step": 580
456
+ },
457
+ {
458
+ "epoch": 0.5244444444444445,
459
+ "grad_norm": 1.82915454709858,
460
+ "learning_rate": 4.915538158478674e-06,
461
+ "loss": 0.8131,
462
+ "step": 590
463
+ },
464
+ {
465
+ "epoch": 0.5333333333333333,
466
+ "grad_norm": 1.9822261774763363,
467
+ "learning_rate": 4.908743721122734e-06,
468
+ "loss": 0.7614,
469
+ "step": 600
470
+ },
471
+ {
472
+ "epoch": 0.5333333333333333,
473
+ "eval_loss": 0.7859019637107849,
474
+ "eval_runtime": 37.9245,
475
+ "eval_samples_per_second": 52.736,
476
+ "eval_steps_per_second": 6.592,
477
+ "step": 600
478
+ },
479
+ {
480
+ "epoch": 0.5422222222222223,
481
+ "grad_norm": 1.7590845282435732,
482
+ "learning_rate": 4.901691534828853e-06,
483
+ "loss": 0.785,
484
+ "step": 610
485
+ },
486
+ {
487
+ "epoch": 0.5511111111111111,
488
+ "grad_norm": 1.7642623616476127,
489
+ "learning_rate": 4.894382354220077e-06,
490
+ "loss": 0.8031,
491
+ "step": 620
492
+ },
493
+ {
494
+ "epoch": 0.56,
495
+ "grad_norm": 1.9487864823051528,
496
+ "learning_rate": 4.886816961419272e-06,
497
+ "loss": 0.7899,
498
+ "step": 630
499
+ },
500
+ {
501
+ "epoch": 0.5688888888888889,
502
+ "grad_norm": 1.8294787755068975,
503
+ "learning_rate": 4.8789961659654276e-06,
504
+ "loss": 0.8079,
505
+ "step": 640
506
+ },
507
+ {
508
+ "epoch": 0.5777777777777777,
509
+ "grad_norm": 1.8448471765270655,
510
+ "learning_rate": 4.870920804727034e-06,
511
+ "loss": 0.8053,
512
+ "step": 650
513
+ },
514
+ {
515
+ "epoch": 0.5866666666666667,
516
+ "grad_norm": 1.9086870869024488,
517
+ "learning_rate": 4.862591741812533e-06,
518
+ "loss": 0.7919,
519
+ "step": 660
520
+ },
521
+ {
522
+ "epoch": 0.5955555555555555,
523
+ "grad_norm": 1.8399676032417565,
524
+ "learning_rate": 4.8540098684778505e-06,
525
+ "loss": 0.8049,
526
+ "step": 670
527
+ },
528
+ {
529
+ "epoch": 0.6044444444444445,
530
+ "grad_norm": 1.7627163023842312,
531
+ "learning_rate": 4.845176103031035e-06,
532
+ "loss": 0.7853,
533
+ "step": 680
534
+ },
535
+ {
536
+ "epoch": 0.6133333333333333,
537
+ "grad_norm": 1.880754220932831,
538
+ "learning_rate": 4.836091390733983e-06,
539
+ "loss": 0.7671,
540
+ "step": 690
541
+ },
542
+ {
543
+ "epoch": 0.6222222222222222,
544
+ "grad_norm": 1.9327151521828667,
545
+ "learning_rate": 4.826756703701298e-06,
546
+ "loss": 0.7758,
547
+ "step": 700
548
+ },
549
+ {
550
+ "epoch": 0.6222222222222222,
551
+ "eval_loss": 0.7827751636505127,
552
+ "eval_runtime": 37.9583,
553
+ "eval_samples_per_second": 52.689,
554
+ "eval_steps_per_second": 6.586,
555
+ "step": 700
556
+ },
557
+ {
558
+ "epoch": 0.6311111111111111,
559
+ "grad_norm": 1.7085337797540057,
560
+ "learning_rate": 4.817173040796263e-06,
561
+ "loss": 0.7581,
562
+ "step": 710
563
+ },
564
+ {
565
+ "epoch": 0.64,
566
+ "grad_norm": 1.8693393810766439,
567
+ "learning_rate": 4.807341427523969e-06,
568
+ "loss": 0.8092,
569
+ "step": 720
570
+ },
571
+ {
572
+ "epoch": 0.6488888888888888,
573
+ "grad_norm": 1.9224847774084641,
574
+ "learning_rate": 4.797262915921561e-06,
575
+ "loss": 0.7905,
576
+ "step": 730
577
+ },
578
+ {
579
+ "epoch": 0.6577777777777778,
580
+ "grad_norm": 1.7921622260237242,
581
+ "learning_rate": 4.7869385844456825e-06,
582
+ "loss": 0.8371,
583
+ "step": 740
584
+ },
585
+ {
586
+ "epoch": 0.6666666666666666,
587
+ "grad_norm": 1.7662786771403587,
588
+ "learning_rate": 4.776369537857062e-06,
589
+ "loss": 0.8039,
590
+ "step": 750
591
+ },
592
+ {
593
+ "epoch": 0.6755555555555556,
594
+ "grad_norm": 1.67555577960425,
595
+ "learning_rate": 4.765556907102306e-06,
596
+ "loss": 0.8153,
597
+ "step": 760
598
+ },
599
+ {
600
+ "epoch": 0.6844444444444444,
601
+ "grad_norm": 1.8971436028748803,
602
+ "learning_rate": 4.7545018491928755e-06,
603
+ "loss": 0.777,
604
+ "step": 770
605
+ },
606
+ {
607
+ "epoch": 0.6933333333333334,
608
+ "grad_norm": 1.6522195956975418,
609
+ "learning_rate": 4.743205547081281e-06,
610
+ "loss": 0.7826,
611
+ "step": 780
612
+ },
613
+ {
614
+ "epoch": 0.7022222222222222,
615
+ "grad_norm": 1.678020666686354,
616
+ "learning_rate": 4.731669209534504e-06,
617
+ "loss": 0.797,
618
+ "step": 790
619
+ },
620
+ {
621
+ "epoch": 0.7111111111111111,
622
+ "grad_norm": 1.8314853043295487,
623
+ "learning_rate": 4.719894071004645e-06,
624
+ "loss": 0.8026,
625
+ "step": 800
626
+ },
627
+ {
628
+ "epoch": 0.7111111111111111,
629
+ "eval_loss": 0.77940833568573,
630
+ "eval_runtime": 37.9303,
631
+ "eval_samples_per_second": 52.728,
632
+ "eval_steps_per_second": 6.591,
633
+ "step": 800
634
+ },
635
+ {
636
+ "epoch": 0.72,
637
+ "grad_norm": 1.6824200358042496,
638
+ "learning_rate": 4.707881391496837e-06,
639
+ "loss": 0.7976,
640
+ "step": 810
641
+ },
642
+ {
643
+ "epoch": 0.7288888888888889,
644
+ "grad_norm": 1.7994312639466354,
645
+ "learning_rate": 4.695632456434414e-06,
646
+ "loss": 0.7883,
647
+ "step": 820
648
+ },
649
+ {
650
+ "epoch": 0.7377777777777778,
651
+ "grad_norm": 1.873881222655515,
652
+ "learning_rate": 4.683148576521363e-06,
653
+ "loss": 0.7901,
654
+ "step": 830
655
+ },
656
+ {
657
+ "epoch": 0.7466666666666667,
658
+ "grad_norm": 1.7081859666296215,
659
+ "learning_rate": 4.670431087602079e-06,
660
+ "loss": 0.7747,
661
+ "step": 840
662
+ },
663
+ {
664
+ "epoch": 0.7555555555555555,
665
+ "grad_norm": 1.817576578011179,
666
+ "learning_rate": 4.657481350518409e-06,
667
+ "loss": 0.8109,
668
+ "step": 850
669
+ },
670
+ {
671
+ "epoch": 0.7644444444444445,
672
+ "grad_norm": 1.827616370549138,
673
+ "learning_rate": 4.644300750964045e-06,
674
+ "loss": 0.8191,
675
+ "step": 860
676
+ },
677
+ {
678
+ "epoch": 0.7733333333333333,
679
+ "grad_norm": 1.783716604929134,
680
+ "learning_rate": 4.630890699336244e-06,
681
+ "loss": 0.7728,
682
+ "step": 870
683
+ },
684
+ {
685
+ "epoch": 0.7822222222222223,
686
+ "grad_norm": 1.8315774625359147,
687
+ "learning_rate": 4.6172526305849094e-06,
688
+ "loss": 0.7899,
689
+ "step": 880
690
+ },
691
+ {
692
+ "epoch": 0.7911111111111111,
693
+ "grad_norm": 1.9174012768682513,
694
+ "learning_rate": 4.603388004059037e-06,
695
+ "loss": 0.8334,
696
+ "step": 890
697
+ },
698
+ {
699
+ "epoch": 0.8,
700
+ "grad_norm": 1.7128496253638654,
701
+ "learning_rate": 4.589298303350565e-06,
702
+ "loss": 0.8,
703
+ "step": 900
704
+ },
705
+ {
706
+ "epoch": 0.8,
707
+ "eval_loss": 0.7756551504135132,
708
+ "eval_runtime": 38.0779,
709
+ "eval_samples_per_second": 52.524,
710
+ "eval_steps_per_second": 6.565,
711
+ "step": 900
712
+ },
713
+ {
714
+ "epoch": 0.8088888888888889,
715
+ "grad_norm": 2.087290188435175,
716
+ "learning_rate": 4.574985036135613e-06,
717
+ "loss": 0.7719,
718
+ "step": 910
719
+ },
720
+ {
721
+ "epoch": 0.8177777777777778,
722
+ "grad_norm": 1.7974331962068042,
723
+ "learning_rate": 4.5604497340131635e-06,
724
+ "loss": 0.765,
725
+ "step": 920
726
+ },
727
+ {
728
+ "epoch": 0.8266666666666667,
729
+ "grad_norm": 1.722447066657561,
730
+ "learning_rate": 4.545693952341159e-06,
731
+ "loss": 0.8213,
732
+ "step": 930
733
+ },
734
+ {
735
+ "epoch": 0.8355555555555556,
736
+ "grad_norm": 1.8137932027496781,
737
+ "learning_rate": 4.5307192700700804e-06,
738
+ "loss": 0.8189,
739
+ "step": 940
740
+ },
741
+ {
742
+ "epoch": 0.8444444444444444,
743
+ "grad_norm": 1.7200813454468675,
744
+ "learning_rate": 4.515527289573986e-06,
745
+ "loss": 0.7995,
746
+ "step": 950
747
+ },
748
+ {
749
+ "epoch": 0.8533333333333334,
750
+ "grad_norm": 1.7492699579153432,
751
+ "learning_rate": 4.50011963647905e-06,
752
+ "loss": 0.8045,
753
+ "step": 960
754
+ },
755
+ {
756
+ "epoch": 0.8622222222222222,
757
+ "grad_norm": 1.8904981608159812,
758
+ "learning_rate": 4.484497959489608e-06,
759
+ "loss": 0.8056,
760
+ "step": 970
761
+ },
762
+ {
763
+ "epoch": 0.8711111111111111,
764
+ "grad_norm": 1.7842392668053924,
765
+ "learning_rate": 4.468663930211743e-06,
766
+ "loss": 0.7881,
767
+ "step": 980
768
+ },
769
+ {
770
+ "epoch": 0.88,
771
+ "grad_norm": 1.8109751414374233,
772
+ "learning_rate": 4.452619242974408e-06,
773
+ "loss": 0.7913,
774
+ "step": 990
775
+ },
776
+ {
777
+ "epoch": 0.8888888888888888,
778
+ "grad_norm": 1.6941534156764066,
779
+ "learning_rate": 4.436365614648128e-06,
780
+ "loss": 0.7568,
781
+ "step": 1000
782
+ },
783
+ {
784
+ "epoch": 0.8888888888888888,
785
+ "eval_loss": 0.7739697098731995,
786
+ "eval_runtime": 38.0044,
787
+ "eval_samples_per_second": 52.625,
788
+ "eval_steps_per_second": 6.578,
789
+ "step": 1000
790
+ },
791
+ {
792
+ "epoch": 0.8977777777777778,
793
+ "grad_norm": 1.7398957715176837,
794
+ "learning_rate": 4.4199047844612825e-06,
795
+ "loss": 0.812,
796
+ "step": 1010
797
+ },
798
+ {
799
+ "epoch": 0.9066666666666666,
800
+ "grad_norm": 1.804683657893465,
801
+ "learning_rate": 4.4032385138139985e-06,
802
+ "loss": 0.8158,
803
+ "step": 1020
804
+ },
805
+ {
806
+ "epoch": 0.9155555555555556,
807
+ "grad_norm": 1.8261068083326866,
808
+ "learning_rate": 4.386368586089674e-06,
809
+ "loss": 0.7766,
810
+ "step": 1030
811
+ },
812
+ {
813
+ "epoch": 0.9244444444444444,
814
+ "grad_norm": 1.929492696716588,
815
+ "learning_rate": 4.369296806464141e-06,
816
+ "loss": 0.801,
817
+ "step": 1040
818
+ },
819
+ {
820
+ "epoch": 0.9333333333333333,
821
+ "grad_norm": 1.8472605566952744,
822
+ "learning_rate": 4.3520250017125076e-06,
823
+ "loss": 0.7876,
824
+ "step": 1050
825
+ },
826
+ {
827
+ "epoch": 0.9422222222222222,
828
+ "grad_norm": 1.790367907695698,
829
+ "learning_rate": 4.334555020013675e-06,
830
+ "loss": 0.7681,
831
+ "step": 1060
832
+ },
833
+ {
834
+ "epoch": 0.9511111111111111,
835
+ "grad_norm": 1.6599756385687388,
836
+ "learning_rate": 4.316888730752583e-06,
837
+ "loss": 0.8135,
838
+ "step": 1070
839
+ },
840
+ {
841
+ "epoch": 0.96,
842
+ "grad_norm": 1.6291519979649327,
843
+ "learning_rate": 4.299028024320166e-06,
844
+ "loss": 0.7741,
845
+ "step": 1080
846
+ },
847
+ {
848
+ "epoch": 0.9688888888888889,
849
+ "grad_norm": 1.5442340466379858,
850
+ "learning_rate": 4.280974811911071e-06,
851
+ "loss": 0.8041,
852
+ "step": 1090
853
+ },
854
+ {
855
+ "epoch": 0.9777777777777777,
856
+ "grad_norm": 1.7271244824498846,
857
+ "learning_rate": 4.262731025319159e-06,
858
+ "loss": 0.7954,
859
+ "step": 1100
860
+ },
861
+ {
862
+ "epoch": 0.9777777777777777,
863
+ "eval_loss": 0.771242082118988,
864
+ "eval_runtime": 38.2542,
865
+ "eval_samples_per_second": 52.282,
866
+ "eval_steps_per_second": 6.535,
867
+ "step": 1100
868
+ },
869
+ {
870
+ "epoch": 0.9866666666666667,
871
+ "grad_norm": 1.730188161467645,
872
+ "learning_rate": 4.244298616730781e-06,
873
+ "loss": 0.8021,
874
+ "step": 1110
875
+ },
876
+ {
877
+ "epoch": 0.9955555555555555,
878
+ "grad_norm": 1.739908218239288,
879
+ "learning_rate": 4.2256795585158894e-06,
880
+ "loss": 0.8171,
881
+ "step": 1120
882
+ },
883
+ {
884
+ "epoch": 1.0044444444444445,
885
+ "grad_norm": 1.6139566050826326,
886
+ "learning_rate": 4.2068758430169805e-06,
887
+ "loss": 0.708,
888
+ "step": 1130
889
+ },
890
+ {
891
+ "epoch": 1.0133333333333334,
892
+ "grad_norm": 1.626198851176862,
893
+ "learning_rate": 4.187889482335905e-06,
894
+ "loss": 0.6309,
895
+ "step": 1140
896
+ },
897
+ {
898
+ "epoch": 1.0222222222222221,
899
+ "grad_norm": 1.7768887610773263,
900
+ "learning_rate": 4.168722508118562e-06,
901
+ "loss": 0.6455,
902
+ "step": 1150
903
+ },
904
+ {
905
+ "epoch": 1.031111111111111,
906
+ "grad_norm": 1.5692860084569409,
907
+ "learning_rate": 4.1493769713374995e-06,
908
+ "loss": 0.6528,
909
+ "step": 1160
910
+ },
911
+ {
912
+ "epoch": 1.04,
913
+ "grad_norm": 1.6046426624256729,
914
+ "learning_rate": 4.12985494207245e-06,
915
+ "loss": 0.6443,
916
+ "step": 1170
917
+ },
918
+ {
919
+ "epoch": 1.048888888888889,
920
+ "grad_norm": 1.741907151593938,
921
+ "learning_rate": 4.110158509288822e-06,
922
+ "loss": 0.6194,
923
+ "step": 1180
924
+ },
925
+ {
926
+ "epoch": 1.0577777777777777,
927
+ "grad_norm": 1.7983079569047793,
928
+ "learning_rate": 4.090289780614167e-06,
929
+ "loss": 0.6544,
930
+ "step": 1190
931
+ },
932
+ {
933
+ "epoch": 1.0666666666666667,
934
+ "grad_norm": 1.955188619876201,
935
+ "learning_rate": 4.070250882112652e-06,
936
+ "loss": 0.6518,
937
+ "step": 1200
938
+ },
939
+ {
940
+ "epoch": 1.0666666666666667,
941
+ "eval_loss": 0.7851578593254089,
942
+ "eval_runtime": 38.1241,
943
+ "eval_samples_per_second": 52.46,
944
+ "eval_steps_per_second": 6.558,
945
+ "step": 1200
946
+ },
947
+ {
948
+ "epoch": 1.0755555555555556,
949
+ "grad_norm": 1.7232020856742132,
950
+ "learning_rate": 4.050043958057561e-06,
951
+ "loss": 0.6258,
952
+ "step": 1210
953
+ },
954
+ {
955
+ "epoch": 1.0844444444444445,
956
+ "grad_norm": 1.593862025253077,
957
+ "learning_rate": 4.029671170701841e-06,
958
+ "loss": 0.6347,
959
+ "step": 1220
960
+ },
961
+ {
962
+ "epoch": 1.0933333333333333,
963
+ "grad_norm": 1.8219516480738216,
964
+ "learning_rate": 4.009134700046735e-06,
965
+ "loss": 0.6266,
966
+ "step": 1230
967
+ },
968
+ {
969
+ "epoch": 1.1022222222222222,
970
+ "grad_norm": 1.714593831219954,
971
+ "learning_rate": 3.988436743608506e-06,
972
+ "loss": 0.6077,
973
+ "step": 1240
974
+ },
975
+ {
976
+ "epoch": 1.1111111111111112,
977
+ "grad_norm": 1.7671062357329015,
978
+ "learning_rate": 3.967579516183292e-06,
979
+ "loss": 0.6797,
980
+ "step": 1250
981
+ },
982
+ {
983
+ "epoch": 1.12,
984
+ "grad_norm": 1.6809718048297995,
985
+ "learning_rate": 3.946565249610108e-06,
986
+ "loss": 0.6416,
987
+ "step": 1260
988
+ },
989
+ {
990
+ "epoch": 1.1288888888888888,
991
+ "grad_norm": 1.7070363329071652,
992
+ "learning_rate": 3.925396192532032e-06,
993
+ "loss": 0.6252,
994
+ "step": 1270
995
+ },
996
+ {
997
+ "epoch": 1.1377777777777778,
998
+ "grad_norm": 1.7723751757721016,
999
+ "learning_rate": 3.90407461015558e-06,
1000
+ "loss": 0.6467,
1001
+ "step": 1280
1002
+ },
1003
+ {
1004
+ "epoch": 1.1466666666666667,
1005
+ "grad_norm": 1.7601350100326427,
1006
+ "learning_rate": 3.882602784008327e-06,
1007
+ "loss": 0.6068,
1008
+ "step": 1290
1009
+ },
1010
+ {
1011
+ "epoch": 1.1555555555555554,
1012
+ "grad_norm": 1.7206913356738147,
1013
+ "learning_rate": 3.8609830116947596e-06,
1014
+ "loss": 0.6344,
1015
+ "step": 1300
1016
+ },
1017
+ {
1018
+ "epoch": 1.1555555555555554,
1019
+ "eval_loss": 0.7862110137939453,
1020
+ "eval_runtime": 37.9389,
1021
+ "eval_samples_per_second": 52.716,
1022
+ "eval_steps_per_second": 6.59,
1023
+ "step": 1300
1024
+ },
1025
+ {
1026
+ "epoch": 1.1644444444444444,
1027
+ "grad_norm": 1.6860528463901245,
1028
+ "learning_rate": 3.839217606650426e-06,
1029
+ "loss": 0.6412,
1030
+ "step": 1310
1031
+ },
1032
+ {
1033
+ "epoch": 1.1733333333333333,
1034
+ "grad_norm": 1.8854670032384495,
1035
+ "learning_rate": 3.817308897894387e-06,
1036
+ "loss": 0.6335,
1037
+ "step": 1320
1038
+ },
1039
+ {
1040
+ "epoch": 1.1822222222222223,
1041
+ "grad_norm": 1.728477549429402,
1042
+ "learning_rate": 3.7952592297799904e-06,
1043
+ "loss": 0.6068,
1044
+ "step": 1330
1045
+ },
1046
+ {
1047
+ "epoch": 1.1911111111111112,
1048
+ "grad_norm": 1.6820412004849736,
1049
+ "learning_rate": 3.7730709617440227e-06,
1050
+ "loss": 0.6379,
1051
+ "step": 1340
1052
+ },
1053
+ {
1054
+ "epoch": 1.2,
1055
+ "grad_norm": 1.648510966848167,
1056
+ "learning_rate": 3.750746468054227e-06,
1057
+ "loss": 0.625,
1058
+ "step": 1350
1059
+ },
1060
+ {
1061
+ "epoch": 1.208888888888889,
1062
+ "grad_norm": 1.548799904758873,
1063
+ "learning_rate": 3.7282881375552475e-06,
1064
+ "loss": 0.622,
1065
+ "step": 1360
1066
+ },
1067
+ {
1068
+ "epoch": 1.2177777777777778,
1069
+ "grad_norm": 1.6536705835515702,
1070
+ "learning_rate": 3.70569837341301e-06,
1071
+ "loss": 0.6554,
1072
+ "step": 1370
1073
+ },
1074
+ {
1075
+ "epoch": 1.2266666666666666,
1076
+ "grad_norm": 1.6426851875006678,
1077
+ "learning_rate": 3.6829795928575703e-06,
1078
+ "loss": 0.6234,
1079
+ "step": 1380
1080
+ },
1081
+ {
1082
+ "epoch": 1.2355555555555555,
1083
+ "grad_norm": 1.6903272164553882,
1084
+ "learning_rate": 3.6601342269244528e-06,
1085
+ "loss": 0.6482,
1086
+ "step": 1390
1087
+ },
1088
+ {
1089
+ "epoch": 1.2444444444444445,
1090
+ "grad_norm": 1.86253547762314,
1091
+ "learning_rate": 3.6371647201945216e-06,
1092
+ "loss": 0.6181,
1093
+ "step": 1400
1094
+ },
1095
+ {
1096
+ "epoch": 1.2444444444444445,
1097
+ "eval_loss": 0.7869328856468201,
1098
+ "eval_runtime": 38.111,
1099
+ "eval_samples_per_second": 52.478,
1100
+ "eval_steps_per_second": 6.56,
1101
+ "step": 1400
1102
+ },
1103
+ {
1104
+ "epoch": 1.2533333333333334,
1105
+ "grad_norm": 1.6989175526314024,
1106
+ "learning_rate": 3.6140735305323943e-06,
1107
+ "loss": 0.6278,
1108
+ "step": 1410
1109
+ },
1110
+ {
1111
+ "epoch": 1.2622222222222224,
1112
+ "grad_norm": 1.8101109025301771,
1113
+ "learning_rate": 3.5908631288234374e-06,
1114
+ "loss": 0.6706,
1115
+ "step": 1420
1116
+ },
1117
+ {
1118
+ "epoch": 1.271111111111111,
1119
+ "grad_norm": 1.9867263313582206,
1120
+ "learning_rate": 3.5675359987093665e-06,
1121
+ "loss": 0.6385,
1122
+ "step": 1430
1123
+ },
1124
+ {
1125
+ "epoch": 1.28,
1126
+ "grad_norm": 1.7574128013903643,
1127
+ "learning_rate": 3.5440946363224855e-06,
1128
+ "loss": 0.6301,
1129
+ "step": 1440
1130
+ },
1131
+ {
1132
+ "epoch": 1.2888888888888888,
1133
+ "grad_norm": 1.4549225489268687,
1134
+ "learning_rate": 3.5205415500185836e-06,
1135
+ "loss": 0.6311,
1136
+ "step": 1450
1137
+ },
1138
+ {
1139
+ "epoch": 1.2977777777777777,
1140
+ "grad_norm": 1.6494499992222607,
1141
+ "learning_rate": 3.4968792601085296e-06,
1142
+ "loss": 0.6596,
1143
+ "step": 1460
1144
+ },
1145
+ {
1146
+ "epoch": 1.3066666666666666,
1147
+ "grad_norm": 1.8893405889710921,
1148
+ "learning_rate": 3.473110298588584e-06,
1149
+ "loss": 0.6493,
1150
+ "step": 1470
1151
+ },
1152
+ {
1153
+ "epoch": 1.3155555555555556,
1154
+ "grad_norm": 1.6296063762923343,
1155
+ "learning_rate": 3.4492372088694605e-06,
1156
+ "loss": 0.6688,
1157
+ "step": 1480
1158
+ },
1159
+ {
1160
+ "epoch": 1.3244444444444445,
1161
+ "grad_norm": 1.8187009493229125,
1162
+ "learning_rate": 3.4252625455041684e-06,
1163
+ "loss": 0.6553,
1164
+ "step": 1490
1165
+ },
1166
+ {
1167
+ "epoch": 1.3333333333333333,
1168
+ "grad_norm": 1.6186019742868865,
1169
+ "learning_rate": 3.4011888739146587e-06,
1170
+ "loss": 0.6511,
1171
+ "step": 1500
1172
+ },
1173
+ {
1174
+ "epoch": 1.3333333333333333,
1175
+ "eval_loss": 0.7797905206680298,
1176
+ "eval_runtime": 38.0768,
1177
+ "eval_samples_per_second": 52.525,
1178
+ "eval_steps_per_second": 6.566,
1179
+ "step": 1500
1180
+ },
1181
+ {
1182
+ "epoch": 1.3422222222222222,
1183
+ "grad_norm": 1.5328967371738955,
1184
+ "learning_rate": 3.377018770117315e-06,
1185
+ "loss": 0.6541,
1186
+ "step": 1510
1187
+ },
1188
+ {
1189
+ "epoch": 1.3511111111111112,
1190
+ "grad_norm": 1.7168181133470535,
1191
+ "learning_rate": 3.3527548204472985e-06,
1192
+ "loss": 0.6492,
1193
+ "step": 1520
1194
+ },
1195
+ {
1196
+ "epoch": 1.3599999999999999,
1197
+ "grad_norm": 1.82949982113254,
1198
+ "learning_rate": 3.3283996212818015e-06,
1199
+ "loss": 0.6125,
1200
+ "step": 1530
1201
+ },
1202
+ {
1203
+ "epoch": 1.3688888888888888,
1204
+ "grad_norm": 1.967299918797367,
1205
+ "learning_rate": 3.303955778762217e-06,
1206
+ "loss": 0.6609,
1207
+ "step": 1540
1208
+ },
1209
+ {
1210
+ "epoch": 1.3777777777777778,
1211
+ "grad_norm": 1.7517637260410819,
1212
+ "learning_rate": 3.2794259085152703e-06,
1213
+ "loss": 0.6451,
1214
+ "step": 1550
1215
+ },
1216
+ {
1217
+ "epoch": 1.3866666666666667,
1218
+ "grad_norm": 1.7338666575605146,
1219
+ "learning_rate": 3.254812635373128e-06,
1220
+ "loss": 0.6064,
1221
+ "step": 1560
1222
+ },
1223
+ {
1224
+ "epoch": 1.3955555555555557,
1225
+ "grad_norm": 1.805258582558589,
1226
+ "learning_rate": 3.2301185930925318e-06,
1227
+ "loss": 0.6349,
1228
+ "step": 1570
1229
+ },
1230
+ {
1231
+ "epoch": 1.4044444444444444,
1232
+ "grad_norm": 2.0099902327429495,
1233
+ "learning_rate": 3.205346424072967e-06,
1234
+ "loss": 0.6354,
1235
+ "step": 1580
1236
+ },
1237
+ {
1238
+ "epoch": 1.4133333333333333,
1239
+ "grad_norm": 1.6968495111035833,
1240
+ "learning_rate": 3.180498779073915e-06,
1241
+ "loss": 0.6008,
1242
+ "step": 1590
1243
+ },
1244
+ {
1245
+ "epoch": 1.4222222222222223,
1246
+ "grad_norm": 1.8666501019542727,
1247
+ "learning_rate": 3.1555783169312048e-06,
1248
+ "loss": 0.6341,
1249
+ "step": 1600
1250
+ },
1251
+ {
1252
+ "epoch": 1.4222222222222223,
1253
+ "eval_loss": 0.7812256217002869,
1254
+ "eval_runtime": 37.9688,
1255
+ "eval_samples_per_second": 52.675,
1256
+ "eval_steps_per_second": 6.584,
1257
+ "step": 1600
1258
+ },
1259
+ {
1260
+ "epoch": 1.431111111111111,
1261
+ "grad_norm": 1.7447699710116413,
1262
+ "learning_rate": 3.1305877042725036e-06,
1263
+ "loss": 0.6548,
1264
+ "step": 1610
1265
+ },
1266
+ {
1267
+ "epoch": 1.44,
1268
+ "grad_norm": 1.6795897002264613,
1269
+ "learning_rate": 3.1055296152319732e-06,
1270
+ "loss": 0.6442,
1271
+ "step": 1620
1272
+ },
1273
+ {
1274
+ "epoch": 1.448888888888889,
1275
+ "grad_norm": 1.8760743794492893,
1276
+ "learning_rate": 3.0804067311641217e-06,
1277
+ "loss": 0.66,
1278
+ "step": 1630
1279
+ },
1280
+ {
1281
+ "epoch": 1.4577777777777778,
1282
+ "grad_norm": 1.9884017264018043,
1283
+ "learning_rate": 3.0552217403568855e-06,
1284
+ "loss": 0.6269,
1285
+ "step": 1640
1286
+ },
1287
+ {
1288
+ "epoch": 1.4666666666666668,
1289
+ "grad_norm": 1.8411666706892968,
1290
+ "learning_rate": 3.0299773377439677e-06,
1291
+ "loss": 0.6277,
1292
+ "step": 1650
1293
+ },
1294
+ {
1295
+ "epoch": 1.4755555555555555,
1296
+ "grad_norm": 1.5184757968572182,
1297
+ "learning_rate": 3.0046762246164608e-06,
1298
+ "loss": 0.6382,
1299
+ "step": 1660
1300
+ },
1301
+ {
1302
+ "epoch": 1.4844444444444445,
1303
+ "grad_norm": 1.9260639142140834,
1304
+ "learning_rate": 2.979321108333799e-06,
1305
+ "loss": 0.6097,
1306
+ "step": 1670
1307
+ },
1308
+ {
1309
+ "epoch": 1.4933333333333334,
1310
+ "grad_norm": 1.741956992068052,
1311
+ "learning_rate": 2.953914702034054e-06,
1312
+ "loss": 0.6319,
1313
+ "step": 1680
1314
+ },
1315
+ {
1316
+ "epoch": 1.5022222222222221,
1317
+ "grad_norm": 1.595093207157502,
1318
+ "learning_rate": 2.928459724343613e-06,
1319
+ "loss": 0.6747,
1320
+ "step": 1690
1321
+ },
1322
+ {
1323
+ "epoch": 1.511111111111111,
1324
+ "grad_norm": 1.7200717117012048,
1325
+ "learning_rate": 2.9029588990862717e-06,
1326
+ "loss": 0.6537,
1327
+ "step": 1700
1328
+ },
1329
+ {
1330
+ "epoch": 1.511111111111111,
1331
+ "eval_loss": 0.7793934941291809,
1332
+ "eval_runtime": 38.0687,
1333
+ "eval_samples_per_second": 52.537,
1334
+ "eval_steps_per_second": 6.567,
1335
+ "step": 1700
1336
+ },
1337
+ {
1338
+ "epoch": 1.52,
1339
+ "grad_norm": 1.6792977916911906,
1340
+ "learning_rate": 2.8774149549917697e-06,
1341
+ "loss": 0.6332,
1342
+ "step": 1710
1343
+ },
1344
+ {
1345
+ "epoch": 1.528888888888889,
1346
+ "grad_norm": 1.7336128902509544,
1347
+ "learning_rate": 2.8518306254037996e-06,
1348
+ "loss": 0.6462,
1349
+ "step": 1720
1350
+ },
1351
+ {
1352
+ "epoch": 1.537777777777778,
1353
+ "grad_norm": 1.6738874310796588,
1354
+ "learning_rate": 2.82620864798753e-06,
1355
+ "loss": 0.6446,
1356
+ "step": 1730
1357
+ },
1358
+ {
1359
+ "epoch": 1.5466666666666666,
1360
+ "grad_norm": 1.5853846000954395,
1361
+ "learning_rate": 2.800551764436652e-06,
1362
+ "loss": 0.6864,
1363
+ "step": 1740
1364
+ },
1365
+ {
1366
+ "epoch": 1.5555555555555556,
1367
+ "grad_norm": 1.7102684215364048,
1368
+ "learning_rate": 2.774862720180008e-06,
1369
+ "loss": 0.6244,
1370
+ "step": 1750
1371
+ },
1372
+ {
1373
+ "epoch": 1.5644444444444443,
1374
+ "grad_norm": 1.6441239452770726,
1375
+ "learning_rate": 2.749144264087814e-06,
1376
+ "loss": 0.6183,
1377
+ "step": 1760
1378
+ },
1379
+ {
1380
+ "epoch": 1.5733333333333333,
1381
+ "grad_norm": 1.8848908060309273,
1382
+ "learning_rate": 2.7233991481775173e-06,
1383
+ "loss": 0.6524,
1384
+ "step": 1770
1385
+ },
1386
+ {
1387
+ "epoch": 1.5822222222222222,
1388
+ "grad_norm": 1.5767138461588817,
1389
+ "learning_rate": 2.697630127319312e-06,
1390
+ "loss": 0.6415,
1391
+ "step": 1780
1392
+ },
1393
+ {
1394
+ "epoch": 1.5911111111111111,
1395
+ "grad_norm": 1.6578116610765519,
1396
+ "learning_rate": 2.6718399589413533e-06,
1397
+ "loss": 0.6488,
1398
+ "step": 1790
1399
+ },
1400
+ {
1401
+ "epoch": 1.6,
1402
+ "grad_norm": 1.6463146375379087,
1403
+ "learning_rate": 2.6460314027347002e-06,
1404
+ "loss": 0.6626,
1405
+ "step": 1800
1406
+ },
1407
+ {
1408
+ "epoch": 1.6,
1409
+ "eval_loss": 0.7779668569564819,
1410
+ "eval_runtime": 38.0224,
1411
+ "eval_samples_per_second": 52.601,
1412
+ "eval_steps_per_second": 6.575,
1413
+ "step": 1800
1414
+ },
1415
+ {
1416
+ "epoch": 1.608888888888889,
1417
+ "grad_norm": 1.3794992178377827,
1418
+ "learning_rate": 2.6202072203580098e-06,
1419
+ "loss": 0.6213,
1420
+ "step": 1810
1421
+ },
1422
+ {
1423
+ "epoch": 1.6177777777777778,
1424
+ "grad_norm": 1.6547672801771742,
1425
+ "learning_rate": 2.594370175142029e-06,
1426
+ "loss": 0.622,
1427
+ "step": 1820
1428
+ },
1429
+ {
1430
+ "epoch": 1.6266666666666667,
1431
+ "grad_norm": 1.8131058123768224,
1432
+ "learning_rate": 2.5685230317938946e-06,
1433
+ "loss": 0.6115,
1434
+ "step": 1830
1435
+ },
1436
+ {
1437
+ "epoch": 1.6355555555555554,
1438
+ "grad_norm": 1.5043497534471073,
1439
+ "learning_rate": 2.542668556101305e-06,
1440
+ "loss": 0.6278,
1441
+ "step": 1840
1442
+ },
1443
+ {
1444
+ "epoch": 1.6444444444444444,
1445
+ "grad_norm": 1.6388736348728028,
1446
+ "learning_rate": 2.516809514636556e-06,
1447
+ "loss": 0.6419,
1448
+ "step": 1850
1449
+ },
1450
+ {
1451
+ "epoch": 1.6533333333333333,
1452
+ "grad_norm": 1.6660885474749705,
1453
+ "learning_rate": 2.4909486744605105e-06,
1454
+ "loss": 0.6158,
1455
+ "step": 1860
1456
+ },
1457
+ {
1458
+ "epoch": 1.6622222222222223,
1459
+ "grad_norm": 1.7074374325187731,
1460
+ "learning_rate": 2.4650888028264993e-06,
1461
+ "loss": 0.6404,
1462
+ "step": 1870
1463
+ },
1464
+ {
1465
+ "epoch": 1.6711111111111112,
1466
+ "grad_norm": 1.5200201087278384,
1467
+ "learning_rate": 2.439232666884216e-06,
1468
+ "loss": 0.6334,
1469
+ "step": 1880
1470
+ },
1471
+ {
1472
+ "epoch": 1.6800000000000002,
1473
+ "grad_norm": 1.7294919605993466,
1474
+ "learning_rate": 2.413383033383614e-06,
1475
+ "loss": 0.6486,
1476
+ "step": 1890
1477
+ },
1478
+ {
1479
+ "epoch": 1.6888888888888889,
1480
+ "grad_norm": 1.6336612869980456,
1481
+ "learning_rate": 2.3875426683788497e-06,
1482
+ "loss": 0.6116,
1483
+ "step": 1900
1484
+ },
1485
+ {
1486
+ "epoch": 1.6888888888888889,
1487
+ "eval_loss": 0.7765544056892395,
1488
+ "eval_runtime": 37.883,
1489
+ "eval_samples_per_second": 52.794,
1490
+ "eval_steps_per_second": 6.599,
1491
+ "step": 1900
1492
+ },
1493
+ {
1494
+ "epoch": 1.6977777777777778,
1495
+ "grad_norm": 1.709115790338184,
1496
+ "learning_rate": 2.3617143369322988e-06,
1497
+ "loss": 0.6252,
1498
+ "step": 1910
1499
+ },
1500
+ {
1501
+ "epoch": 1.7066666666666666,
1502
+ "grad_norm": 1.7821417246615834,
1503
+ "learning_rate": 2.33590080281868e-06,
1504
+ "loss": 0.6107,
1505
+ "step": 1920
1506
+ },
1507
+ {
1508
+ "epoch": 1.7155555555555555,
1509
+ "grad_norm": 1.6445009506847397,
1510
+ "learning_rate": 2.310104828229313e-06,
1511
+ "loss": 0.6142,
1512
+ "step": 1930
1513
+ },
1514
+ {
1515
+ "epoch": 1.7244444444444444,
1516
+ "grad_norm": 1.841236220247559,
1517
+ "learning_rate": 2.2843291734765544e-06,
1518
+ "loss": 0.6502,
1519
+ "step": 1940
1520
+ },
1521
+ {
1522
+ "epoch": 1.7333333333333334,
1523
+ "grad_norm": 1.842694284367171,
1524
+ "learning_rate": 2.2585765966984236e-06,
1525
+ "loss": 0.674,
1526
+ "step": 1950
1527
+ },
1528
+ {
1529
+ "epoch": 1.7422222222222223,
1530
+ "grad_norm": 1.8090827021490723,
1531
+ "learning_rate": 2.2328498535634704e-06,
1532
+ "loss": 0.6175,
1533
+ "step": 1960
1534
+ },
1535
+ {
1536
+ "epoch": 1.751111111111111,
1537
+ "grad_norm": 1.6878272228854192,
1538
+ "learning_rate": 2.2071516969758988e-06,
1539
+ "loss": 0.6231,
1540
+ "step": 1970
1541
+ },
1542
+ {
1543
+ "epoch": 1.76,
1544
+ "grad_norm": 1.9731653412399757,
1545
+ "learning_rate": 2.181484876780996e-06,
1546
+ "loss": 0.629,
1547
+ "step": 1980
1548
+ },
1549
+ {
1550
+ "epoch": 1.7688888888888887,
1551
+ "grad_norm": 1.6667636315286483,
1552
+ "learning_rate": 2.1558521394708793e-06,
1553
+ "loss": 0.6658,
1554
+ "step": 1990
1555
+ },
1556
+ {
1557
+ "epoch": 1.7777777777777777,
1558
+ "grad_norm": 1.7254699126772677,
1559
+ "learning_rate": 2.1302562278906106e-06,
1560
+ "loss": 0.6327,
1561
+ "step": 2000
1562
+ },
1563
+ {
1564
+ "epoch": 1.7777777777777777,
1565
+ "eval_loss": 0.7731255292892456,
1566
+ "eval_runtime": 38.4418,
1567
+ "eval_samples_per_second": 52.027,
1568
+ "eval_steps_per_second": 6.503,
1569
+ "step": 2000
1570
+ }
1571
+ ],
1572
+ "logging_steps": 10,
1573
+ "max_steps": 3375,
1574
+ "num_input_tokens_seen": 0,
1575
+ "num_train_epochs": 3,
1576
+ "save_steps": 1000,
1577
+ "stateful_callbacks": {
1578
+ "TrainerControl": {
1579
+ "args": {
1580
+ "should_epoch_stop": false,
1581
+ "should_evaluate": false,
1582
+ "should_log": false,
1583
+ "should_save": true,
1584
+ "should_training_stop": false
1585
+ },
1586
+ "attributes": {}
1587
+ }
1588
+ },
1589
+ "total_flos": 102798860353536.0,
1590
+ "train_batch_size": 1,
1591
+ "trial_name": null,
1592
+ "trial_params": null
1593
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12abd2c91b01a822d41c856433df3965960b85daf3f009e4554cb8f02f3ee956
3
+ size 7160
checkpoint-2000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-3000/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-3000/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-3000/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
checkpoint-3000/global_step3000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a76883af89258bb455bb0b4e591506c4e0a0489e308448b2b42f24d193296f2
3
+ size 11423430028