metadata
base_model: stabilityai/stable-diffusion-2-1
library_name: diffusers
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
inference: true
datasets:
- vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000
LoRA text2image fine-tuning - vwu142/pokemon-lora
These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000 dataset. You can find some example images in the following.
Intended uses & limitations
How to use
# Importing LoRA Weights
from huggingface_hub import model_info
# LoRA weights ~3 MB
model_path = "vwu142/pokemon-lora"
# Getting Base Model
info = model_info(model_path)
model_base = info.cardData["base_model"]
print(model_base)
# Importing the Diffusion model with the weights added
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")
Training details
The weights were trained on the Free GPU provided in Google Collab.
The data it was trained on comes from this dataset: https://huggingface.co/datasets/vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000
It has images of pokemon cards and pokemon with various descriptions of the image.
This was the parameters and the script used to train the weights
!accelerate launch --mixed_precision="fp16" diffusers/examples/text_to_image/train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--mixed_precision="fp16" \
--dataset_name=$DATASET_NAME --caption_column="caption"\
--dataloader_num_workers=8 \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=1500 \
--learning_rate=1e-04 \
--max_grad_norm=1 \
--lr_scheduler="cosine" --lr_warmup_steps=0 \
--output_dir=${OUTPUT_DIR} \
--push_to_hub \
--hub_model_id=${HUB_MODEL_ID} \
--report_to=wandb \
--checkpointing_steps=500 \
--validation_prompt="Ludicolo" \
--seed=1337