|
--- |
|
license: apache-2.0 |
|
language: |
|
- vi |
|
tags: |
|
- automatic-speech-recognition |
|
- robust-speech-event |
|
- common-voice |
|
- vi |
|
model-index: |
|
- name: wav2vec2-large-xlsr-53-ja |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8.0 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: ja |
|
metrics: |
|
- name: Test WER (with LM) |
|
type: wer |
|
value: 16.08 |
|
- name: Test CER (with LM) |
|
type: cer |
|
value: 7.15 |
|
--- |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. |
|
|
|
### Benchmark WER result: |
|
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|
|---|---|---| |
|
|without LM| 15.74 | 25.10 | |
|
|with 4-grams LM| 15.37 | 16.09 | |
|
|
|
### Benchmark CER result: |
|
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|
|---|---|---| |
|
|without LM| 9.51 | 9.95 | |
|
|with 4-grams LM| 6.91 | 7.15 | |
|
|
|
## Evaluation |
|
|
|
Please use the eval.py file to run the evaluation: |
|
|
|
```python |
|
python eval.py --model_id vutankiet2901/wav2vec2-large-xlsr-53-ja --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 4.7776 | 4.73 | 1500 | 2.9540 | 0.9772 | 0.8489 | |
|
| 1.9076 | 9.46 | 3000 | 0.7146 | 0.5371 | 0.2484 | |
|
| 1.507 | 14.2 | 4500 | 0.5843 | 0.4689 | 0.2196 | |
|
| 1.3742 | 18.93 | 6000 | 0.5286 | 0.4321 | 0.1988 | |
|
| 1.2776 | 23.66 | 7500 | 0.5007 | 0.4056 | 0.1870 | |
|
| 1.2003 | 28.39 | 9000 | 0.4676 | 0.3848 | 0.1802 | |
|
| 1.1281 | 33.12 | 10500 | 0.4524 | 0.3694 | 0.1720 | |
|
| 1.0657 | 37.85 | 12000 | 0.4449 | 0.3590 | 0.1681 | |
|
| 1.0129 | 42.59 | 13500 | 0.4266 | 0.3423 | 0.1617 | |
|
| 0.9691 | 47.32 | 15000 | 0.4214 | 0.3375 | 0.1587 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|