whisper-medium-jp / README.md
vumichien's picture
Update README.md
ce1317d
|
raw
history blame
2.45 kB
---
language:
- ja
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium Japanese
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 ja
type: mozilla-foundation/common_voice_11_0
config: ja
split: test
args: ja
metrics:
- type: wer
value: 9.035472972972974
name: WER
- type: cer
value: 5.61
name: CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs ja_jp
type: google/fleurs
config: ja_jp
split: test
metrics:
- type: wer
value: 13.56
name: WER
- type: cer
value: 8.01
name: CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3029
- Wer: 9.0355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0392 | 3.03 | 1000 | 0.2023 | 10.1807 |
| 0.0036 | 7.01 | 2000 | 0.2478 | 9.4409 |
| 0.0013 | 10.04 | 3000 | 0.2791 | 9.1014 |
| 0.0002 | 14.01 | 4000 | 0.2970 | 9.0625 |
| 0.0002 | 17.04 | 5000 | 0.3029 | 9.0355 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2