metadata
license: cc-by-nc-4.0
datasets:
- stockmark/ner-wikipedia-dataset
language:
- ja
metrics:
- f1
- precision
- recall
tags:
- NER
- information extraction
- relation extraction
- summarization
- sentiment extraction
- question-answering
pipeline_tag: token-classification
library_name: gliner
vumichien/ner-jp-gliner
This model is a fine-tuned version of deberta-v3-base-japanese on the Japanese Ner Wikipedia dataset. It achieves the following results:
- Precision: 96.07%
- Recall: 89.16%
- F1 score: 92.49%
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- num_steps: 30000
- train_batch_size: 8
- eval_every: 3000
- warmup_ratio: 0.1
- scheduler_type: "cosine"
- loss_alpha: -1
- loss_gamma: 0
- label_smoothing: 0
- loss_reduction: "sum"
- lr_encoder: 1e-5
- lr_others: 5e-5
- weight_decay_encoder: 0.01
- weight_decay_other: 0.01
Training results
Epoch | Training Loss |
---|---|
1 | 1291.582200 |
2 | 53.290100 |
3 | 44.137400 |
4 | 35.286200 |
5 | 20.865500 |
6 | 15.890000 |
7 | 13.369600 |
8 | 11.599500 |
9 | 9.773400 |
10 | 8.372600 |
11 | 7.256200 |
12 | 6.521800 |
13 | 7.203800 |
14 | 7.032900 |
15 | 6.189700 |
16 | 6.897400 |
17 | 6.031700 |
18 | 5.329600 |
19 | 5.411300 |
20 | 5.253800 |
21 | 4.522000 |
22 | 5.107700 |
23 | 4.163300 |
24 | 4.185400 |
25 | 3.403100 |
26 | 3.272400 |
27 | 2.387800 |
28 | 3.039400 |
29 | 2.383000 |
30 | 1.895300 |
31 | 1.748700 |
32 | 1.864300 |
33 | 2.343000 |
34 | 1.356600 |
35 | 1.182000 |
36 | 0.894700 |
37 | 0.954900 |