quality_model_apr3 / README.md
vtiyyal1's picture
Training completed!
b7b2993 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: quality_model_apr3
    results: []

quality_model_apr3

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0117
  • Mse: 0.0117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Mse
0.0209 0.05 50 0.0135 0.0135
0.0179 0.11 100 0.0118 0.0118
0.0153 0.16 150 0.0116 0.0116
0.0159 0.22 200 0.0131 0.0131
0.0169 0.27 250 0.0163 0.0163
0.0116 0.32 300 0.0116 0.0116
0.0094 0.38 350 0.0123 0.0123
0.0168 0.43 400 0.0115 0.0115
0.0224 0.48 450 0.0135 0.0135
0.0144 0.54 500 0.0116 0.0116
0.0147 0.59 550 0.0115 0.0115
0.0117 0.65 600 0.0121 0.0121
0.0198 0.7 650 0.0120 0.0120
0.0119 0.75 700 0.0121 0.0121
0.0166 0.81 750 0.0118 0.0118
0.0096 0.86 800 0.0123 0.0123
0.0166 0.92 850 0.0115 0.0115
0.0181 0.97 900 0.0114 0.0114
0.0128 1.02 950 0.0114 0.0114
0.0174 1.08 1000 0.0113 0.0113
0.0161 1.13 1050 0.0126 0.0126
0.0174 1.19 1100 0.0141 0.0141
0.016 1.24 1150 0.0114 0.0114
0.0098 1.29 1200 0.0114 0.0114
0.0179 1.35 1250 0.0126 0.0126
0.0141 1.4 1300 0.0115 0.0115
0.0118 1.45 1350 0.0116 0.0116
0.0115 1.51 1400 0.0113 0.0113
0.0118 1.56 1450 0.0113 0.0113
0.0165 1.62 1500 0.0118 0.0118
0.0129 1.67 1550 0.0113 0.0113
0.011 1.72 1600 0.0118 0.0118
0.0128 1.78 1650 0.0120 0.0120
0.0145 1.83 1700 0.0124 0.0124
0.014 1.89 1750 0.0114 0.0114
0.0155 1.94 1800 0.0114 0.0114
0.0144 1.99 1850 0.0114 0.0114
0.0141 2.05 1900 0.0114 0.0114
0.0108 2.1 1950 0.0117 0.0117
0.0109 2.16 2000 0.0113 0.0113
0.0124 2.21 2050 0.0132 0.0132
0.0169 2.26 2100 0.0123 0.0123
0.0115 2.32 2150 0.0120 0.0120
0.0102 2.37 2200 0.0117 0.0117
0.0189 2.42 2250 0.0116 0.0116
0.0136 2.48 2300 0.0115 0.0115
0.0116 2.53 2350 0.0119 0.0119
0.0141 2.59 2400 0.0119 0.0119
0.0098 2.64 2450 0.0120 0.0120
0.0081 2.69 2500 0.0117 0.0117
0.009 2.75 2550 0.0119 0.0119
0.0121 2.8 2600 0.0118 0.0118
0.0128 2.86 2650 0.0123 0.0123
0.0131 2.91 2700 0.0117 0.0117
0.009 2.96 2750 0.0117 0.0117

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2