|
--- |
|
base_model: razent/SciFive-base-Pubmed_PMC |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: scifive_five_epoch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scifive_five_epoch |
|
|
|
This model is a fine-tuned version of [razent/SciFive-base-Pubmed_PMC](https://huggingface.co/razent/SciFive-base-Pubmed_PMC) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1218 |
|
- Rouge1: 0.3765 |
|
- Rouge2: 0.214 |
|
- Rougel: 0.3144 |
|
- Rougelsum: 0.3146 |
|
- Gen Len: 17.78 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 213 | 2.4847 | 0.2245 | 0.1102 | 0.1992 | 0.1996 | 15.8 | |
|
| No log | 2.0 | 426 | 2.2700 | 0.309 | 0.1671 | 0.2616 | 0.2609 | 17.61 | |
|
| 2.4677 | 3.0 | 639 | 2.1797 | 0.345 | 0.1914 | 0.2891 | 0.2889 | 17.85 | |
|
| 2.4677 | 4.0 | 852 | 2.1419 | 0.3665 | 0.2104 | 0.3063 | 0.3067 | 17.67 | |
|
| 1.9093 | 5.0 | 1065 | 2.1218 | 0.3765 | 0.214 | 0.3144 | 0.3146 | 17.78 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|