metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- masakhaner2
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-wolof
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: masakhaner2
type: masakhaner2
config: wol
split: validation
args: wol
metrics:
- name: F1
type: f1
value: 0.8217446270543616
xlm-roberta-base-finetuned-wolof
This model is a fine-tuned version of xlm-roberta-base on the masakhaner2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0589
- F1: 0.8217
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.2113 | 1.0 | 247 | 0.0823 | 0.7443 |
0.0749 | 2.0 | 494 | 0.0635 | 0.8097 |
0.0445 | 3.0 | 741 | 0.0589 | 0.8217 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3