metadata
license: cc-by-nc-4.0
base_model: facebook/mms-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-300m-sah
results: []
mms-300m-sah
This model is a fine-tuned version of facebook/mms-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3105
- Wer: 0.3059
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.3074 | 1.0 | 111 | 4.1552 | 1.0 |
3.6543 | 2.0 | 222 | 3.2635 | 1.0 |
3.109 | 3.0 | 333 | 2.9604 | 1.0 |
2.221 | 4.0 | 444 | 0.9272 | 0.7549 |
0.6842 | 5.0 | 555 | 0.4823 | 0.5726 |
0.4123 | 6.0 | 666 | 0.3828 | 0.5006 |
0.3021 | 7.0 | 777 | 0.3563 | 0.4868 |
0.2589 | 8.0 | 888 | 0.3188 | 0.4482 |
0.2246 | 9.0 | 999 | 0.3108 | 0.4430 |
0.1896 | 10.0 | 1110 | 0.3100 | 0.4130 |
0.1695 | 11.0 | 1221 | 0.2926 | 0.4104 |
0.1528 | 12.0 | 1332 | 0.2906 | 0.4133 |
0.1385 | 13.0 | 1443 | 0.2815 | 0.3931 |
0.1267 | 14.0 | 1554 | 0.3070 | 0.3966 |
0.1194 | 15.0 | 1665 | 0.2917 | 0.3877 |
0.1102 | 16.0 | 1776 | 0.2896 | 0.3805 |
0.1056 | 17.0 | 1887 | 0.2768 | 0.3793 |
0.099 | 18.0 | 1998 | 0.2910 | 0.3782 |
0.0897 | 19.0 | 2109 | 0.3145 | 0.3793 |
0.0876 | 20.0 | 2220 | 0.3028 | 0.3710 |
0.0878 | 21.0 | 2331 | 0.2956 | 0.3744 |
0.0877 | 22.0 | 2442 | 0.2894 | 0.3730 |
0.0851 | 23.0 | 2553 | 0.3086 | 0.3805 |
0.0825 | 24.0 | 2664 | 0.3168 | 0.3744 |
0.0765 | 25.0 | 2775 | 0.3113 | 0.3615 |
0.0778 | 26.0 | 2886 | 0.3204 | 0.3744 |
0.0777 | 27.0 | 2997 | 0.3257 | 0.3727 |
0.0752 | 28.0 | 3108 | 0.3118 | 0.3612 |
0.0736 | 29.0 | 3219 | 0.3159 | 0.3638 |
0.0677 | 30.0 | 3330 | 0.2975 | 0.3540 |
0.0663 | 31.0 | 3441 | 0.3080 | 0.3548 |
0.0655 | 32.0 | 3552 | 0.3223 | 0.3597 |
0.0658 | 33.0 | 3663 | 0.3215 | 0.3571 |
0.0664 | 34.0 | 3774 | 0.3164 | 0.3733 |
0.0635 | 35.0 | 3885 | 0.3239 | 0.3586 |
0.0621 | 36.0 | 3996 | 0.3188 | 0.3586 |
0.06 | 37.0 | 4107 | 0.2937 | 0.3563 |
0.0572 | 38.0 | 4218 | 0.3262 | 0.3620 |
0.0576 | 39.0 | 4329 | 0.3097 | 0.3505 |
0.0571 | 40.0 | 4440 | 0.3086 | 0.3580 |
0.0559 | 41.0 | 4551 | 0.3257 | 0.3641 |
0.0581 | 42.0 | 4662 | 0.3245 | 0.3537 |
0.0542 | 43.0 | 4773 | 0.3193 | 0.3612 |
0.0516 | 44.0 | 4884 | 0.2950 | 0.3531 |
0.0553 | 45.0 | 4995 | 0.3261 | 0.3522 |
0.0508 | 46.0 | 5106 | 0.3347 | 0.3563 |
0.0478 | 47.0 | 5217 | 0.3229 | 0.3600 |
0.0468 | 48.0 | 5328 | 0.3134 | 0.3482 |
0.0478 | 49.0 | 5439 | 0.3087 | 0.3491 |
0.045 | 50.0 | 5550 | 0.3103 | 0.3361 |
0.0485 | 51.0 | 5661 | 0.3148 | 0.3476 |
0.0438 | 52.0 | 5772 | 0.3138 | 0.3448 |
0.0444 | 53.0 | 5883 | 0.3151 | 0.3407 |
0.0447 | 54.0 | 5994 | 0.2992 | 0.3355 |
0.0439 | 55.0 | 6105 | 0.3165 | 0.3436 |
0.0413 | 56.0 | 6216 | 0.3184 | 0.3384 |
0.0394 | 57.0 | 6327 | 0.3217 | 0.3404 |
0.0413 | 58.0 | 6438 | 0.3062 | 0.3315 |
0.0386 | 59.0 | 6549 | 0.2985 | 0.3255 |
0.039 | 60.0 | 6660 | 0.3125 | 0.3407 |
0.038 | 61.0 | 6771 | 0.2937 | 0.3381 |
0.0361 | 62.0 | 6882 | 0.3138 | 0.3318 |
0.0359 | 63.0 | 6993 | 0.3296 | 0.3315 |
0.0347 | 64.0 | 7104 | 0.3260 | 0.3355 |
0.036 | 65.0 | 7215 | 0.3003 | 0.3373 |
0.0366 | 66.0 | 7326 | 0.2967 | 0.3283 |
0.0321 | 67.0 | 7437 | 0.3035 | 0.3240 |
0.0308 | 68.0 | 7548 | 0.3335 | 0.3390 |
0.0311 | 69.0 | 7659 | 0.3096 | 0.3263 |
0.0325 | 70.0 | 7770 | 0.3164 | 0.3306 |
0.032 | 71.0 | 7881 | 0.2890 | 0.3211 |
0.0312 | 72.0 | 7992 | 0.2847 | 0.3194 |
0.0289 | 73.0 | 8103 | 0.2904 | 0.3200 |
0.0289 | 74.0 | 8214 | 0.2932 | 0.3174 |
0.0276 | 75.0 | 8325 | 0.2921 | 0.3168 |
0.0277 | 76.0 | 8436 | 0.3054 | 0.3200 |
0.0271 | 77.0 | 8547 | 0.3078 | 0.3197 |
0.0261 | 78.0 | 8658 | 0.3191 | 0.3220 |
0.0268 | 79.0 | 8769 | 0.3081 | 0.3211 |
0.0251 | 80.0 | 8880 | 0.3089 | 0.3142 |
0.0245 | 81.0 | 8991 | 0.3081 | 0.3151 |
0.0229 | 82.0 | 9102 | 0.3124 | 0.3148 |
0.0232 | 83.0 | 9213 | 0.3074 | 0.3142 |
0.0241 | 84.0 | 9324 | 0.3045 | 0.3111 |
0.0213 | 85.0 | 9435 | 0.3234 | 0.3131 |
0.0215 | 86.0 | 9546 | 0.3148 | 0.3105 |
0.0209 | 87.0 | 9657 | 0.3160 | 0.3134 |
0.0208 | 88.0 | 9768 | 0.3055 | 0.3099 |
0.0201 | 89.0 | 9879 | 0.2996 | 0.3065 |
0.0196 | 90.0 | 9990 | 0.3036 | 0.3073 |
0.0187 | 91.0 | 10101 | 0.3137 | 0.3111 |
0.0189 | 92.0 | 10212 | 0.3089 | 0.3067 |
0.0184 | 93.0 | 10323 | 0.3118 | 0.3113 |
0.0172 | 94.0 | 10434 | 0.3081 | 0.3105 |
0.018 | 95.0 | 10545 | 0.3108 | 0.3099 |
0.0164 | 96.0 | 10656 | 0.3081 | 0.3073 |
0.0175 | 97.0 | 10767 | 0.3100 | 0.3082 |
0.0159 | 98.0 | 10878 | 0.3124 | 0.3056 |
0.0181 | 99.0 | 10989 | 0.3093 | 0.3044 |
0.0161 | 100.0 | 11100 | 0.3105 | 0.3059 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3