metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: es
datasets:
- lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.
example_title: Question Generation Example 1
- text: a <hl> noviembre <hl> , que es también la estación lluviosa.
example_title: Question Generation Example 2
- text: >-
como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de
septiembre de 2013.
example_title: Question Generation Example 3
model-index:
- name: vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_esquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 9.79
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 24.63
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 22.64
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 84.4
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 59.16
Model Card of vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qg
This model is fine-tuned version of ckpts/mt5-small-trimmed-es-60000 for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: ckpts/mt5-small-trimmed-es-60000
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qg")
# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-es-60000-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 84.4 | default | lmqg/qg_esquad |
Bleu_1 | 26.37 | default | lmqg/qg_esquad |
Bleu_2 | 18.03 | default | lmqg/qg_esquad |
Bleu_3 | 13.1 | default | lmqg/qg_esquad |
Bleu_4 | 9.79 | default | lmqg/qg_esquad |
METEOR | 22.64 | default | lmqg/qg_esquad |
MoverScore | 59.16 | default | lmqg/qg_esquad |
ROUGE_L | 24.63 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: paragraph_answer
- output_types: question
- prefix_types: None
- model: ckpts/mt5-small-trimmed-es-60000
- max_length: 512
- max_length_output: 32
- epoch: 13
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}