Upload DeepseekFixedForCausalLM
Browse files- README.md +199 -0
- config.json +1 -1
- configuration_deepseek_fixed.py +1 -0
- generation_config.json +1 -1
- modelling_deepseek_fixed.py +20 -8
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
CHANGED
@@ -38,7 +38,7 @@
|
|
38 |
"seq_aux": true,
|
39 |
"tie_word_embeddings": false,
|
40 |
"torch_dtype": "float32",
|
41 |
-
"transformers_version": "4.
|
42 |
"use_cache": true,
|
43 |
"vocab_size": 102400
|
44 |
}
|
|
|
38 |
"seq_aux": true,
|
39 |
"tie_word_embeddings": false,
|
40 |
"torch_dtype": "float32",
|
41 |
+
"transformers_version": "4.43.3",
|
42 |
"use_cache": true,
|
43 |
"vocab_size": 102400
|
44 |
}
|
configuration_deepseek_fixed.py
CHANGED
@@ -141,6 +141,7 @@ class DeepseekFixedConfig(PretrainedConfig):
|
|
141 |
moe_implementation="eager",
|
142 |
**kwargs,
|
143 |
):
|
|
|
144 |
self.vocab_size = vocab_size
|
145 |
self.max_position_embeddings = max_position_embeddings
|
146 |
self.hidden_size = hidden_size
|
|
|
141 |
moe_implementation="eager",
|
142 |
**kwargs,
|
143 |
):
|
144 |
+
assert moe_implementation in ('eager', 'megablocks'), "Invalid moe_implementation value. Choose from 'eager' or 'megablocks'."
|
145 |
self.vocab_size = vocab_size
|
146 |
self.max_position_embeddings = max_position_embeddings
|
147 |
self.hidden_size = hidden_size
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 100000,
|
4 |
"eos_token_id": 100001,
|
5 |
-
"transformers_version": "4.
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 100000,
|
4 |
"eos_token_id": 100001,
|
5 |
+
"transformers_version": "4.43.3"
|
6 |
}
|
modelling_deepseek_fixed.py
CHANGED
@@ -44,17 +44,18 @@ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or
|
|
44 |
from transformers.utils import (
|
45 |
add_start_docstrings,
|
46 |
add_start_docstrings_to_model_forward,
|
47 |
-
is_flash_attn_2_available,
|
48 |
logging,
|
49 |
replace_return_docstrings,
|
50 |
)
|
51 |
from transformers.utils.import_utils import is_torch_fx_available
|
52 |
from .configuration_deepseek_fixed import DeepseekFixedConfig
|
53 |
|
54 |
-
|
55 |
from transformers.utils import is_flash_attn_greater_or_equal_2_10
|
56 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
|
58 |
|
59 |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
60 |
# It means that the function will not be traced through and simply appear as a node in the graph.
|
@@ -333,7 +334,7 @@ class MoEGate(nn.Module):
|
|
333 |
aux_loss = (Pi * fi).sum() * self.alpha
|
334 |
else:
|
335 |
aux_loss = None
|
336 |
-
return topk_idx, topk_weight, aux_loss
|
337 |
|
338 |
|
339 |
class AddAuxiliaryLoss(torch.autograd.Function):
|
@@ -383,11 +384,7 @@ class DeepseekFixedMoE(nn.Module):
|
|
383 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
384 |
flat_topk_idx = topk_idx.view(-1)
|
385 |
if self.training:
|
386 |
-
|
387 |
-
y = torch.empty_like(hidden_states)
|
388 |
-
for i, expert in enumerate(self.experts):
|
389 |
-
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
390 |
-
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
391 |
y = y.view(*orig_shape)
|
392 |
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
393 |
else:
|
@@ -396,6 +393,14 @@ class DeepseekFixedMoE(nn.Module):
|
|
396 |
y = y + self.shared_experts(identity)
|
397 |
return y
|
398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
@torch.no_grad()
|
400 |
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
401 |
expert_cache = torch.zeros_like(x)
|
@@ -617,6 +622,13 @@ try:
|
|
617 |
)
|
618 |
return x.view(*orig_shape)
|
619 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
warnings.warn("Megablocks MoE is LOADED")
|
621 |
|
622 |
DeepseekFixed_MOE_CLASSES['megablocks'] = DeepseekFixedMegablocksMoE
|
|
|
44 |
from transformers.utils import (
|
45 |
add_start_docstrings,
|
46 |
add_start_docstrings_to_model_forward,
|
|
|
47 |
logging,
|
48 |
replace_return_docstrings,
|
49 |
)
|
50 |
from transformers.utils.import_utils import is_torch_fx_available
|
51 |
from .configuration_deepseek_fixed import DeepseekFixedConfig
|
52 |
|
53 |
+
try:
|
54 |
from transformers.utils import is_flash_attn_greater_or_equal_2_10
|
55 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
56 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
57 |
+
except ImportError:
|
58 |
+
pass
|
59 |
|
60 |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
61 |
# It means that the function will not be traced through and simply appear as a node in the graph.
|
|
|
334 |
aux_loss = (Pi * fi).sum() * self.alpha
|
335 |
else:
|
336 |
aux_loss = None
|
337 |
+
return topk_idx, topk_weight.to(hidden_states.dtype), aux_loss
|
338 |
|
339 |
|
340 |
class AddAuxiliaryLoss(torch.autograd.Function):
|
|
|
384 |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
385 |
flat_topk_idx = topk_idx.view(-1)
|
386 |
if self.training:
|
387 |
+
y = self.moe_train(hidden_states, flat_topk_idx, topk_weight.view(-1, 1))
|
|
|
|
|
|
|
|
|
388 |
y = y.view(*orig_shape)
|
389 |
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
390 |
else:
|
|
|
393 |
y = y + self.shared_experts(identity)
|
394 |
return y
|
395 |
|
396 |
+
def moe_train(self, hidden_states, flat_topk_idx, topk_weight):
|
397 |
+
hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
|
398 |
+
y = torch.empty_like(hidden_states)
|
399 |
+
for i, expert in enumerate(self.experts):
|
400 |
+
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
401 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
402 |
+
return y
|
403 |
+
|
404 |
@torch.no_grad()
|
405 |
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
406 |
expert_cache = torch.zeros_like(x)
|
|
|
622 |
)
|
623 |
return x.view(*orig_shape)
|
624 |
|
625 |
+
def moe_train(self, hidden_states, flat_topk_idx, topk_weight):
|
626 |
+
orig_shape = hidden_states.shape
|
627 |
+
hidden_states = self.sparse_forward(
|
628 |
+
hidden_states, topk_weight, flat_topk_idx
|
629 |
+
)
|
630 |
+
return hidden_states.view(*orig_shape)
|
631 |
+
|
632 |
warnings.warn("Megablocks MoE is LOADED")
|
633 |
|
634 |
DeepseekFixed_MOE_CLASSES['megablocks'] = DeepseekFixedMegablocksMoE
|