vltnmmdv commited on
Commit
4bb2538
1 Parent(s): 3cb0445

Upload DeepseekFixedForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json CHANGED
@@ -38,7 +38,7 @@
38
  "seq_aux": true,
39
  "tie_word_embeddings": false,
40
  "torch_dtype": "float32",
41
- "transformers_version": "4.36.0",
42
  "use_cache": true,
43
  "vocab_size": 102400
44
  }
 
38
  "seq_aux": true,
39
  "tie_word_embeddings": false,
40
  "torch_dtype": "float32",
41
+ "transformers_version": "4.43.3",
42
  "use_cache": true,
43
  "vocab_size": 102400
44
  }
configuration_deepseek_fixed.py CHANGED
@@ -141,6 +141,7 @@ class DeepseekFixedConfig(PretrainedConfig):
141
  moe_implementation="eager",
142
  **kwargs,
143
  ):
 
144
  self.vocab_size = vocab_size
145
  self.max_position_embeddings = max_position_embeddings
146
  self.hidden_size = hidden_size
 
141
  moe_implementation="eager",
142
  **kwargs,
143
  ):
144
+ assert moe_implementation in ('eager', 'megablocks'), "Invalid moe_implementation value. Choose from 'eager' or 'megablocks'."
145
  self.vocab_size = vocab_size
146
  self.max_position_embeddings = max_position_embeddings
147
  self.hidden_size = hidden_size
generation_config.json CHANGED
@@ -2,5 +2,5 @@
2
  "_from_model_config": true,
3
  "bos_token_id": 100000,
4
  "eos_token_id": 100001,
5
- "transformers_version": "4.36.0"
6
  }
 
2
  "_from_model_config": true,
3
  "bos_token_id": 100000,
4
  "eos_token_id": 100001,
5
+ "transformers_version": "4.43.3"
6
  }
modelling_deepseek_fixed.py CHANGED
@@ -44,17 +44,18 @@ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or
44
  from transformers.utils import (
45
  add_start_docstrings,
46
  add_start_docstrings_to_model_forward,
47
- is_flash_attn_2_available,
48
  logging,
49
  replace_return_docstrings,
50
  )
51
  from transformers.utils.import_utils import is_torch_fx_available
52
  from .configuration_deepseek_fixed import DeepseekFixedConfig
53
 
54
- if is_flash_attn_2_available():
55
  from transformers.utils import is_flash_attn_greater_or_equal_2_10
56
  from flash_attn import flash_attn_func, flash_attn_varlen_func
57
  from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
 
 
58
 
59
  # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
60
  # It means that the function will not be traced through and simply appear as a node in the graph.
@@ -333,7 +334,7 @@ class MoEGate(nn.Module):
333
  aux_loss = (Pi * fi).sum() * self.alpha
334
  else:
335
  aux_loss = None
336
- return topk_idx, topk_weight, aux_loss
337
 
338
 
339
  class AddAuxiliaryLoss(torch.autograd.Function):
@@ -383,11 +384,7 @@ class DeepseekFixedMoE(nn.Module):
383
  hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
384
  flat_topk_idx = topk_idx.view(-1)
385
  if self.training:
386
- hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
387
- y = torch.empty_like(hidden_states)
388
- for i, expert in enumerate(self.experts):
389
- y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
390
- y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
391
  y = y.view(*orig_shape)
392
  y = AddAuxiliaryLoss.apply(y, aux_loss)
393
  else:
@@ -396,6 +393,14 @@ class DeepseekFixedMoE(nn.Module):
396
  y = y + self.shared_experts(identity)
397
  return y
398
 
 
 
 
 
 
 
 
 
399
  @torch.no_grad()
400
  def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
401
  expert_cache = torch.zeros_like(x)
@@ -617,6 +622,13 @@ try:
617
  )
618
  return x.view(*orig_shape)
619
 
 
 
 
 
 
 
 
620
  warnings.warn("Megablocks MoE is LOADED")
621
 
622
  DeepseekFixed_MOE_CLASSES['megablocks'] = DeepseekFixedMegablocksMoE
 
44
  from transformers.utils import (
45
  add_start_docstrings,
46
  add_start_docstrings_to_model_forward,
 
47
  logging,
48
  replace_return_docstrings,
49
  )
50
  from transformers.utils.import_utils import is_torch_fx_available
51
  from .configuration_deepseek_fixed import DeepseekFixedConfig
52
 
53
+ try:
54
  from transformers.utils import is_flash_attn_greater_or_equal_2_10
55
  from flash_attn import flash_attn_func, flash_attn_varlen_func
56
  from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+ except ImportError:
58
+ pass
59
 
60
  # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
61
  # It means that the function will not be traced through and simply appear as a node in the graph.
 
334
  aux_loss = (Pi * fi).sum() * self.alpha
335
  else:
336
  aux_loss = None
337
+ return topk_idx, topk_weight.to(hidden_states.dtype), aux_loss
338
 
339
 
340
  class AddAuxiliaryLoss(torch.autograd.Function):
 
384
  hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
385
  flat_topk_idx = topk_idx.view(-1)
386
  if self.training:
387
+ y = self.moe_train(hidden_states, flat_topk_idx, topk_weight.view(-1, 1))
 
 
 
 
388
  y = y.view(*orig_shape)
389
  y = AddAuxiliaryLoss.apply(y, aux_loss)
390
  else:
 
393
  y = y + self.shared_experts(identity)
394
  return y
395
 
396
+ def moe_train(self, hidden_states, flat_topk_idx, topk_weight):
397
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
398
+ y = torch.empty_like(hidden_states)
399
+ for i, expert in enumerate(self.experts):
400
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
401
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
402
+ return y
403
+
404
  @torch.no_grad()
405
  def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
406
  expert_cache = torch.zeros_like(x)
 
622
  )
623
  return x.view(*orig_shape)
624
 
625
+ def moe_train(self, hidden_states, flat_topk_idx, topk_weight):
626
+ orig_shape = hidden_states.shape
627
+ hidden_states = self.sparse_forward(
628
+ hidden_states, topk_weight, flat_topk_idx
629
+ )
630
+ return hidden_states.view(*orig_shape)
631
+
632
  warnings.warn("Megablocks MoE is LOADED")
633
 
634
  DeepseekFixed_MOE_CLASSES['megablocks'] = DeepseekFixedMegablocksMoE