metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-medium-konnakol
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 67.08860759493672
whisper-medium-konnakol
This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2784
- Wer: 67.0886
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 80.0 | 100 | 0.2458 | 56.5401 |
0.0225 | 160.0 | 200 | 0.2694 | 61.6034 |
0.0225 | 240.0 | 300 | 0.2743 | 56.9620 |
0.0 | 320.0 | 400 | 0.2771 | 67.0886 |
0.0 | 400.0 | 500 | 0.2784 | 67.0886 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1