metadata
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain 🤗
datasets:
- vkheman/autotrain-data-multic
co2_eq_emissions:
emissions: 1.3867154772046042
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 42139108182
- CO2 Emissions (in grams): 1.3867
Validation Metrics
- Loss: 0.758
- Accuracy: 0.836
- Macro F1: 0.835
- Micro F1: 0.836
- Weighted F1: 0.836
- Macro Precision: 0.839
- Micro Precision: 0.836
- Weighted Precision: 0.840
- Macro Recall: 0.836
- Micro Recall: 0.836
- Weighted Recall: 0.836
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vkheman/autotrain-multic-42139108182
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("vkheman/autotrain-multic-42139108182", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("vkheman/autotrain-multic-42139108182", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)