|
--- |
|
base_model: klue/roberta-small |
|
tags: |
|
- generated_from_trainer |
|
- korean |
|
- klue |
|
widget: |
|
- text: 저는 서울특별시 강남대로에 삽니다. 전화번호는 010-1234-5678이고 주민등록번호는 123456-1234567입니다. 메일주소는 hugging@face.com입니다. |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: klue_roberta_small_ner_identified |
|
results: [] |
|
language: |
|
- ko |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# klue_roberta_small_ner_identified |
|
|
|
This model is a fine-tuned version of [klue/roberta-small](https://huggingface.co/klue/roberta-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0212 |
|
- Precision: 0.9803 |
|
- Recall: 1.0 |
|
- F1: 0.9901 |
|
- Accuracy: 0.9980 |
|
|
|
## Model description |
|
|
|
아래 항목에 대한 개체명 인식을 제공합니다. |
|
|
|
- 사람이름 [PS] - 낮은 인식률 |
|
- 주소 (구 주소 및 도로명 주소) [AD] |
|
- 카드번호 [CN] |
|
- 계좌번호 [BN] |
|
- 운전면허번호 [DN] |
|
- 주민등록번호 [RN] |
|
- 여권번호 [PN] |
|
- 전화번호 [PH] |
|
- 이메일 주소 [EM] |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 15 | 0.2866 | 0.1199 | 0.2739 | 0.1668 | 0.9287 | |
|
| No log | 2.0 | 30 | 0.1369 | 0.6599 | 0.7996 | 0.7231 | 0.9654 | |
|
| No log | 3.0 | 45 | 0.0629 | 0.8088 | 0.9042 | 0.8538 | 0.9915 | |
|
| No log | 4.0 | 60 | 0.0381 | 0.9760 | 0.9978 | 0.9868 | 0.9969 | |
|
| No log | 5.0 | 75 | 0.0276 | 0.9781 | 0.9955 | 0.9868 | 0.9981 | |
|
| No log | 6.0 | 90 | 0.0238 | 0.9803 | 1.0 | 0.9901 | 0.9979 | |
|
| No log | 7.0 | 105 | 0.0224 | 0.9803 | 1.0 | 0.9901 | 0.9979 | |
|
| No log | 8.0 | 120 | 0.0212 | 0.9803 | 1.0 | 0.9901 | 0.9980 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|
|
### Use |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
from transformers import pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("vitus9988/klue-roberta-small-ner-identified") |
|
model = AutoModelForTokenClassification.from_pretrained("vitus9988/klue-roberta-small-ner-identified") |
|
|
|
nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
example = """ |
|
저는 서울특별시 강남대로 56길 100호에 삽니다. 전화번호는 010-1234-5678이고 주민등록번호는 123456-1234567입니다. 메일주소는 hugging@face.com입니다. |
|
""" |
|
|
|
ner_results = nlp(example) |
|
for i in ner_results: |
|
print(i) |
|
|
|
#{'entity_group': 'AD', 'score': 0.79996574, 'word': '서울특별시 강남대로 56길 100호', 'start': 4, 'end': 23} |
|
#{'entity_group': 'PH', 'score': 0.948794, 'word': '010 - 1234 - 5678', 'start': 36, 'end': 49} |
|
#{'entity_group': 'RN', 'score': 0.90686846, 'word': '123456 - 1234567', 'start': 60, 'end': 74} |
|
#{'entity_group': 'EM', 'score': 0.935588, 'word': 'hugging @ face. com', 'start': 85, 'end': 101} |
|
|
|
``` |
|
|
|
|