vittai23's picture
update model card README.md
3a0f0c1
metadata
language:
  - mar
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper_marathi_small_V1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: mr
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 45.00676938946554

whisper_marathi_small_V1

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2754
  • Wer: 45.0068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4794 0.41 100 0.4754 59.9317
0.3121 0.81 200 0.3161 52.8786
0.2051 1.22 300 0.2900 50.2547
0.1887 1.63 400 0.2779 48.1336
0.16 2.03 500 0.2679 46.2639
0.1131 2.44 600 0.2706 45.8449
0.1128 2.85 700 0.2658 45.1551
0.0678 3.25 800 0.2763 45.2195
0.075 3.66 900 0.2769 45.7611
0.0609 4.07 1000 0.2754 45.0068

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2