visheratin
commited on
Commit
•
b7f24e7
1
Parent(s):
e5c191f
Update README.md
Browse files
README.md
CHANGED
@@ -3,6 +3,64 @@ tags:
|
|
3 |
- clip
|
4 |
library_name: open_clip
|
5 |
pipeline_tag: zero-shot-image-classification
|
6 |
-
license:
|
|
|
|
|
7 |
---
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
- clip
|
4 |
library_name: open_clip
|
5 |
pipeline_tag: zero-shot-image-classification
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
datasets:
|
8 |
+
- visheratin/laion-coco-nllb
|
9 |
---
|
10 |
+
|
11 |
+
## Model Summary
|
12 |
+
|
13 |
+
NLLB-CLIP-SigLIP is a model that combines a text encoder from the [NLLB model](https://huggingface.co/facebook/nllb-200-distilled-1.3B) and an image encoder from the
|
14 |
+
[SigLIP](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) model. This allows us to extend the model capabilities
|
15 |
+
to 201 languages of the Flores-200. NLLB-CLIP sets state-of-the-art on the [Crossmodal-3600](https://google.github.io/crossmodal-3600/) dataset by performing very
|
16 |
+
well on low-resource languages. You can find more details about the model in the [paper](https://arxiv.org/abs/2309.01859).
|
17 |
+
|
18 |
+
This version performs much better than the [standard](https://huggingface.co/visheratin/nllb-clip-large-oc) version. You can see the results
|
19 |
+
[here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_multilingual_retrieval_results.csv) and
|
20 |
+
[here](https://github.com/gregor-ge/Babel-ImageNet/blob/main/evaluation_scripts/results_analysis.ipynb).
|
21 |
+
|
22 |
+
## How to use
|
23 |
+
|
24 |
+
<a target="_blank" href="https://colab.research.google.com/drive/1TE_jln3SwTDzjFsGqbdxIJkwrUlnNs3i">
|
25 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
26 |
+
</a>
|
27 |
+
|
28 |
+
This model is integrated into OpenCLIP so that you can use it as any other model:
|
29 |
+
|
30 |
+
```
|
31 |
+
!pip install -U open_clip_torch
|
32 |
+
```
|
33 |
+
|
34 |
+
```
|
35 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
36 |
+
from PIL import Image
|
37 |
+
import requests
|
38 |
+
import torch
|
39 |
+
|
40 |
+
model, transform = create_model_from_pretrained("nllb-clip-base-siglip", "v1", device="cuda")
|
41 |
+
|
42 |
+
tokenizer = get_tokenizer("nllb-clip-base-siglip")
|
43 |
+
|
44 |
+
class_options = ["бабочка", "butterfly", "kat"]
|
45 |
+
class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"]
|
46 |
+
|
47 |
+
text_inputs = []
|
48 |
+
for i in range(len(class_options)):
|
49 |
+
tokenizer.set_language(class_langs[i])
|
50 |
+
text_inputs.append(tokenizer(class_options[i]))
|
51 |
+
text_inputs = torch.stack(text_inputs).squeeze(1).to("cuda")
|
52 |
+
|
53 |
+
image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg"
|
54 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
55 |
+
|
56 |
+
image_inputs = transform(image).unsqueeze(0).to("cuda")
|
57 |
+
|
58 |
+
with torch.inference_mode():
|
59 |
+
logits_per_image, logits_per_text = model.get_logits(image_inputs, text_inputs)
|
60 |
+
|
61 |
+
print(logits_per_image.softmax(dim=-1))
|
62 |
+
```
|
63 |
+
|
64 |
+
## Acknowledgements
|
65 |
+
|
66 |
+
I thank [ML Collective](https://mlcollective.org/) for providing Google Cloud compute resources to train the OpenCLIP-compatible version of NLLB-CLIP.
|