metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-dutch-fast-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: nl
split: test
args: nl
metrics:
- name: Wer
type: wer
value: 0.3763171813336588
wav2vec2-large-xls-r-300m-dutch-fast-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.4580
- Wer: 0.3763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.9018 | 0.58 | 200 | 2.9377 | 1.0 |
2.1148 | 1.15 | 400 | 1.1957 | 0.8662 |
0.7195 | 1.73 | 600 | 0.7060 | 0.5645 |
0.3888 | 2.31 | 800 | 0.5290 | 0.4377 |
0.2488 | 2.88 | 1000 | 0.4580 | 0.3763 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3