|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
model-index: |
|
- name: mathvi/output_model2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: /workspace/axolotl/mathvi/input_output_meta_llama_3_8b_instruct-00000-of-00001.parquet |
|
type: input_output |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
eval_sample_packing: false |
|
output_dir: mathvi/output_model2 |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
pad_to_sequence_len: false |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 64 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 32 |
|
micro_batch_size: 4 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_32bit |
|
lr_scheduler: cosine |
|
learning_rate: 2e-4 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
s2_attention: |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 10 |
|
eval_table_size: |
|
eval_max_new_tokens: 512 |
|
saves_per_epoch: 2 |
|
save_total_limit: 20 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# mathvi/output_model2 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3327 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.0442 | 0.0190 | 1 | 2.0734 | |
|
| 1.449 | 0.1137 | 6 | 1.2774 | |
|
| 0.8548 | 0.2275 | 12 | 0.9006 | |
|
| 0.8561 | 0.3412 | 18 | 0.7924 | |
|
| 0.744 | 0.4550 | 24 | 0.7176 | |
|
| 0.6752 | 0.5687 | 30 | 0.6603 | |
|
| 0.5908 | 0.6825 | 36 | 0.6117 | |
|
| 0.5229 | 0.7962 | 42 | 0.5702 | |
|
| 0.558 | 0.9100 | 48 | 0.5281 | |
|
| 0.4343 | 1.0237 | 54 | 0.4752 | |
|
| 0.4039 | 1.1374 | 60 | 0.4152 | |
|
| 0.3744 | 1.2512 | 66 | 0.4225 | |
|
| 0.3313 | 1.3649 | 72 | 0.3852 | |
|
| 0.374 | 1.4787 | 78 | 0.3740 | |
|
| 0.3246 | 1.5924 | 84 | 0.3657 | |
|
| 0.3392 | 1.7062 | 90 | 0.3591 | |
|
| 0.3309 | 1.8199 | 96 | 0.3505 | |
|
| 0.3621 | 1.9336 | 102 | 0.3437 | |
|
| 0.2819 | 2.0474 | 108 | 0.3416 | |
|
| 0.2672 | 2.1611 | 114 | 0.3414 | |
|
| 0.2284 | 2.2749 | 120 | 0.3375 | |
|
| 0.2836 | 2.3886 | 126 | 0.3353 | |
|
| 0.2504 | 2.5024 | 132 | 0.3337 | |
|
| 0.2696 | 2.6161 | 138 | 0.3328 | |
|
| 0.2775 | 2.7299 | 144 | 0.3327 | |
|
| 0.2554 | 2.8436 | 150 | 0.3325 | |
|
| 0.2551 | 2.9573 | 156 | 0.3327 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |