xsum-t5-small / README.md
vineetsharma's picture
End of training
e5cdbb4
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: xsum-t5-small
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          config: default
          split: validation
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 28.3309

xsum-t5-small

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4789
  • Rouge1: 28.3309
  • Rouge2: 7.7568
  • Rougel: 22.2948
  • Rougelsum: 22.2942
  • Gen Len: 18.824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.9158 0.16 2000 2.5725 26.6629 6.6436 20.8032 20.7995 18.7886
2.7868 0.31 4000 2.5286 27.3979 7.1077 21.4451 21.4487 18.8045
2.756 0.47 6000 2.5058 27.8049 7.4383 21.8465 21.8479 18.8179
2.7388 0.63 8000 2.4903 28.1541 7.6412 22.1566 22.1572 18.8265
2.7208 0.78 10000 2.4819 28.2559 7.6877 22.2086 22.2118 18.8268
2.7175 0.94 12000 2.4789 28.3309 7.7568 22.2948 22.2942 18.824

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3