vineetsharma's picture
Added Dataset Info
84a60c5
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - ktgiahieu/maccrobat2018_2020
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BioMedical_NER-maccrobat-distilbert
    results: []
widget:
  - text: >-
      CASE: A 28-year-old previously healthy man presented with a 6-week history
      of palpitations. The symptoms occurred during rest, 2–3 times per week,
      lasted up to 30 minutes at a time and were associated with dyspnea. Except
      for a grade 2/6 holosystolic tricuspid regurgitation murmur (best heard at
      the left sternal border with inspiratory accentuation), physical
      examination yielded unremarkable findings.
    example_title: example 1
  - text: >-
      A 63-year-old woman with no known cardiac history presented with a sudden
      onset of dyspnea requiring intubation and ventilatory support out of
      hospital. She denied preceding symptoms of chest discomfort, palpitations,
      syncope or infection. The patient was afebrile and normotensive, with a
      sinus tachycardia of 140 beats/min.
    example_title: example 2
  - text: >-
      A 48 year-old female presented with vaginal bleeding and abnormal Pap
      smears. Upon diagnosis of invasive non-keratinizing SCC of the cervix, she
      underwent a radical hysterectomy with salpingo-oophorectomy which
      demonstrated positive spread to the pelvic lymph nodes and the
      parametrium. Pathological examination revealed that the tumour also
      extensively involved the lower uterine segment.
    example_title: example 3

BioMedical_NER-maccrobat-distilbert

This model is a fine-tuned version of distilbert-base-uncased on maccrobat2018_2020 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3418
  • Precision: 0.8858
  • Recall: 0.9578
  • F1: 0.9204
  • Accuracy: 0.9541

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 70

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 45 1.8297 0.0 0.0 0.0 0.6197
No log 2.0 90 1.5738 0.2713 0.0490 0.0830 0.6324
No log 3.0 135 1.3283 0.3165 0.2269 0.2644 0.6654
No log 4.0 180 1.1738 0.3634 0.3538 0.3585 0.6915
No log 5.0 225 1.1003 0.4080 0.5041 0.4510 0.7074
No log 6.0 270 1.0484 0.4339 0.5727 0.4937 0.7193
No log 7.0 315 0.9841 0.4685 0.6209 0.5340 0.7434
No log 8.0 360 0.8765 0.5286 0.6369 0.5777 0.7712
No log 9.0 405 0.8037 0.5638 0.6635 0.6096 0.7922
No log 10.0 450 0.7924 0.5572 0.7013 0.6210 0.8008
No log 11.0 495 0.7403 0.5732 0.7228 0.6394 0.8143
1.0716 12.0 540 0.6235 0.6636 0.7083 0.6852 0.8457
1.0716 13.0 585 0.6182 0.6418 0.7448 0.6895 0.8487
1.0716 14.0 630 0.6498 0.6312 0.7724 0.6947 0.8456
1.0716 15.0 675 0.5830 0.6638 0.7874 0.7204 0.8650
1.0716 16.0 720 0.5199 0.6992 0.7954 0.7442 0.8804
1.0716 17.0 765 0.5470 0.7129 0.8119 0.7592 0.8836
1.0716 18.0 810 0.5065 0.7269 0.8318 0.7758 0.8920
1.0716 19.0 855 0.4645 0.7521 0.8353 0.7916 0.9018
1.0716 20.0 900 0.5204 0.7240 0.8501 0.7820 0.8915
1.0716 21.0 945 0.4383 0.7660 0.8495 0.8056 0.9078
1.0716 22.0 990 0.4345 0.7659 0.8662 0.8130 0.9127
0.2987 23.0 1035 0.4492 0.7675 0.8733 0.8170 0.9118
0.2987 24.0 1080 0.4654 0.7691 0.8805 0.8211 0.9101
0.2987 25.0 1125 0.4186 0.7995 0.8778 0.8368 0.9216
0.2987 26.0 1170 0.3898 0.8131 0.8871 0.8485 0.9269
0.2987 27.0 1215 0.4057 0.8041 0.8928 0.8461 0.9256
0.2987 28.0 1260 0.3916 0.8156 0.8938 0.8529 0.9290
0.2987 29.0 1305 0.3771 0.8250 0.8989 0.8604 0.9317
0.2987 30.0 1350 0.3690 0.8253 0.8997 0.8609 0.9337
0.2987 31.0 1395 0.3716 0.8320 0.9084 0.8685 0.9357
0.2987 32.0 1440 0.3764 0.8278 0.9115 0.8677 0.9349
0.2987 33.0 1485 0.3549 0.8389 0.9113 0.8736 0.9376
0.1133 34.0 1530 0.3715 0.8368 0.9160 0.8746 0.9372
0.1133 35.0 1575 0.3621 0.8452 0.9208 0.8814 0.9401
0.1133 36.0 1620 0.3533 0.8489 0.9248 0.8852 0.9420
0.1133 37.0 1665 0.3471 0.8540 0.9259 0.8885 0.9427
0.1133 38.0 1710 0.3492 0.8504 0.9263 0.8867 0.9423
0.1133 39.0 1755 0.3570 0.8572 0.9327 0.8933 0.9441
0.1133 40.0 1800 0.3647 0.8535 0.9348 0.8923 0.9436
0.1133 41.0 1845 0.3500 0.8656 0.9381 0.9004 0.9466
0.1133 42.0 1890 0.3570 0.8594 0.9405 0.8981 0.9452
0.1133 43.0 1935 0.3545 0.8695 0.9436 0.9050 0.9480
0.1133 44.0 1980 0.3578 0.8660 0.9415 0.9022 0.9467
0.0575 45.0 2025 0.3384 0.8723 0.9419 0.9058 0.9498
0.0575 46.0 2070 0.3450 0.8755 0.9472 0.9100 0.9502
0.0575 47.0 2115 0.3468 0.8736 0.9495 0.9100 0.9500
0.0575 48.0 2160 0.3488 0.8706 0.9502 0.9087 0.9505
0.0575 49.0 2205 0.3480 0.8738 0.9517 0.9111 0.9506
0.0575 50.0 2250 0.3474 0.8725 0.9504 0.9098 0.9501
0.0575 51.0 2295 0.3463 0.8711 0.9498 0.9087 0.9499
0.0575 52.0 2340 0.3328 0.8782 0.9525 0.9138 0.9518
0.0575 53.0 2385 0.3550 0.8738 0.9527 0.9115 0.9508
0.0575 54.0 2430 0.3351 0.8777 0.9525 0.9135 0.9526
0.0575 55.0 2475 0.3438 0.8781 0.9548 0.9148 0.9521
0.0364 56.0 2520 0.3452 0.8797 0.9540 0.9153 0.9521
0.0364 57.0 2565 0.3496 0.8810 0.9561 0.9170 0.9523
0.0364 58.0 2610 0.3472 0.8802 0.9557 0.9164 0.9525
0.0364 59.0 2655 0.3476 0.8813 0.9559 0.9171 0.9530
0.0364 60.0 2700 0.3413 0.8839 0.9563 0.9187 0.9536
0.0364 61.0 2745 0.3395 0.8839 0.9563 0.9187 0.9538
0.0364 62.0 2790 0.3417 0.8843 0.9580 0.9196 0.9537
0.0364 63.0 2835 0.3397 0.8846 0.9563 0.9191 0.9536
0.0364 64.0 2880 0.3428 0.8839 0.9576 0.9192 0.9534
0.0364 65.0 2925 0.3411 0.8847 0.9576 0.9197 0.9539
0.0364 66.0 2970 0.3442 0.8849 0.9574 0.9197 0.9538
0.028 67.0 3015 0.3444 0.8844 0.9578 0.9196 0.9538
0.028 68.0 3060 0.3437 0.8857 0.9584 0.9206 0.9541
0.028 69.0 3105 0.3411 0.8857 0.9582 0.9205 0.9540
0.028 70.0 3150 0.3418 0.8858 0.9578 0.9204 0.9541

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3