metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9248727594600575
- name: Recall
type: recall
value: 0.9351157847633964
- name: F1
type: f1
value: 0.9299660677532403
- name: Accuracy
type: accuracy
value: 0.9834622777892513
distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0611
- Precision: 0.9249
- Recall: 0.9351
- F1: 0.9300
- Accuracy: 0.9835
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2463 | 1.0 | 878 | 0.0687 | 0.9129 | 0.9220 | 0.9175 | 0.9816 |
0.0549 | 2.0 | 1756 | 0.0608 | 0.9243 | 0.9347 | 0.9295 | 0.9834 |
0.0309 | 3.0 | 2634 | 0.0611 | 0.9249 | 0.9351 | 0.9300 | 0.9835 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3