vincentmin's picture
End of training
e2fc4dc
|
raw
history blame
2.52 kB
metadata
base_model: meta-llama/Llama-2-13b-chat-hf
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: llama-2-13b-reward-oasst1
    results: []
library_name: peft

llama-2-13b-reward-oasst1

This model is a fine-tuned version of meta-llama/Llama-2-13b-chat-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4810
  • Accuracy: 0.7869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5602 0.08 250 0.5436 0.7388
0.6166 0.17 500 0.5340 0.7468
0.6545 0.25 750 0.4899 0.7644
0.5635 0.33 1000 0.4877 0.7532
0.5933 0.42 1250 0.4930 0.7660
0.5758 0.5 1500 0.4851 0.7740
0.5212 0.58 1750 0.5021 0.7788
0.5251 0.67 2000 0.4893 0.7804
0.5145 0.75 2250 0.4924 0.7853
0.5085 0.83 2500 0.4934 0.7853
0.617 0.92 2750 0.4803 0.7821
0.5525 1.0 3000 0.4810 0.7869

Framework versions

  • PEFT 0.5.0.dev0
  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3