Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,73 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
|
11 |
|
12 |
## Model Details
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
|
48 |
-
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
116 |
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
128 |
|
129 |
-
[More Information Needed]
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
|
200 |
|
201 |
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- accuracy
|
7 |
+
pipeline_tag: text-classification
|
8 |
---
|
9 |
|
10 |
# Model Card for Model ID
|
11 |
|
12 |
+
The model detects hallucination and outputs NLI metrics. It has been trained on:
|
13 |
+
TRUE Dataset(93k samples) - 0.91 F1 score
|
14 |
|
15 |
|
16 |
|
17 |
## Model Details
|
18 |
+
Crossencoder model which has been trained on TRUE dataset to detect hallucination focussed on summarization.
|
19 |
+
Natural Language Inference (NLI) involves deciding if a "hypothesis" is logically supported by a "premise."
|
20 |
+
Simply put, it's about figuring out if a given statement (the hypothesis) is true based on another statement (the premise)
|
21 |
+
that serves as your sole information about the topic.
|
22 |
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
## Uses
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63a7d07154f1d0225b0b9d1c/2B4LjjEJuRq14wQMs3nK2.png)
|
29 |
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Bias, Risks, and Limitations
|
33 |
|
34 |
+
You can use this to finetune for specific tasks but using directly on intense financial or medical based documents is not recommended.
|
|
|
|
|
|
|
|
|
35 |
|
|
|
36 |
|
|
|
37 |
|
38 |
## How to Get Started with the Model
|
39 |
|
40 |
Use the code below to get started with the model.
|
41 |
|
42 |
+
model = AutoModelForSequenceClassification.from_pretrained('vikash06/Hallucination-model-True-dataset')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained('vikash06/Hallucination-model-True-dataset')
|
45 |
|
46 |
+
inputs = tokenizer.batch_encode_plus(pairs, return_tensors='pt', padding=True, truncation=True)
|
47 |
|
48 |
+
pairs = [["Colin Kaepernick . Kaepernick began his professional career as a backup to Alex Smith , but became the 49ers ' starter in the middle of the 2012 season after Smith suffered a concussion . He remained the team 's starting quarterback for the rest of the season and went on to lead the 49ers to their first Super Bowl appearance since 1994 , losing to the Baltimore Ravens .",
|
49 |
+
'Colin Kaepernick became a starting quarterback during the 49ers 63rd season in the National Football League.' ],
|
50 |
+
["Soul Food is a 1997 American comedy-drama film produced by Kenneth `` Babyface '' Edmonds , Tracey Edmonds and Robert Teitel and released by Fox 2000 Pictures .",
|
51 |
+
'Fox 2000 Pictures released the film Soul Food.']]
|
52 |
+
|
53 |
+
inputs = inputs.to("cuda:0")
|
54 |
|
55 |
+
model.eval()
|
56 |
|
57 |
+
with torch.no_grad():
|
58 |
|
59 |
+
outputs = model(**inputs)
|
60 |
+
|
61 |
+
logits = outputs.logits # ensure your model outputs logits directly
|
62 |
|
63 |
+
scores = 1 / (1 + np.exp(-logits.cpu().detach().numpy())).flatten()
|
64 |
|
65 |
+
The scores lie between 0-1 where 1 represents no hallucination and 0 represents hallucination.
|
66 |
|
|
|
67 |
|
68 |
+
### Training Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
70 |
|
71 |
+
TRUE Dataset all 93k samples: https://arxiv.org/pdf/2204.04991
|
72 |
|
73 |
|