Merge branch 'main' of https://huggingface.co/vesteinn/vit-mae-inat21
Browse files
README.md
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Note that this model does not work directly with HF, a modification that does mean pooling before the layernorm and classification head is needed.
|
2 |
+
|
3 |
+
|
4 |
+
```python
|
5 |
+
from transformers import (
|
6 |
+
ViTForImageClassification,
|
7 |
+
pipeline,
|
8 |
+
AutoImageProcessor,
|
9 |
+
ViTConfig,
|
10 |
+
ViTModel,
|
11 |
+
)
|
12 |
+
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
ImageClassifierOutput,
|
15 |
+
BaseModelOutputWithPooling,
|
16 |
+
)
|
17 |
+
|
18 |
+
from PIL import Image
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
from typing import Optional, Union, Tuple
|
22 |
+
|
23 |
+
|
24 |
+
class CustomViTModel(ViTModel):
|
25 |
+
def forward(
|
26 |
+
self,
|
27 |
+
pixel_values: Optional[torch.Tensor] = None,
|
28 |
+
bool_masked_pos: Optional[torch.BoolTensor] = None,
|
29 |
+
head_mask: Optional[torch.Tensor] = None,
|
30 |
+
output_attentions: Optional[bool] = None,
|
31 |
+
output_hidden_states: Optional[bool] = None,
|
32 |
+
interpolate_pos_encoding: Optional[bool] = None,
|
33 |
+
return_dict: Optional[bool] = None,
|
34 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
35 |
+
r"""
|
36 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
37 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
38 |
+
"""
|
39 |
+
output_attentions = (
|
40 |
+
output_attentions
|
41 |
+
if output_attentions is not None
|
42 |
+
else self.config.output_attentions
|
43 |
+
)
|
44 |
+
output_hidden_states = (
|
45 |
+
output_hidden_states
|
46 |
+
if output_hidden_states is not None
|
47 |
+
else self.config.output_hidden_states
|
48 |
+
)
|
49 |
+
return_dict = (
|
50 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
51 |
+
)
|
52 |
+
|
53 |
+
if pixel_values is None:
|
54 |
+
raise ValueError("You have to specify pixel_values")
|
55 |
+
|
56 |
+
# Prepare head mask if needed
|
57 |
+
# 1.0 in head_mask indicate we keep the head
|
58 |
+
# attention_probs has shape bsz x n_heads x N x N
|
59 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
60 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
61 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
62 |
+
|
63 |
+
# TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?)
|
64 |
+
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype
|
65 |
+
if pixel_values.dtype != expected_dtype:
|
66 |
+
pixel_values = pixel_values.to(expected_dtype)
|
67 |
+
|
68 |
+
embedding_output = self.embeddings(
|
69 |
+
pixel_values,
|
70 |
+
bool_masked_pos=bool_masked_pos,
|
71 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
72 |
+
)
|
73 |
+
|
74 |
+
encoder_outputs = self.encoder(
|
75 |
+
embedding_output,
|
76 |
+
head_mask=head_mask,
|
77 |
+
output_attentions=output_attentions,
|
78 |
+
output_hidden_states=output_hidden_states,
|
79 |
+
return_dict=return_dict,
|
80 |
+
)
|
81 |
+
sequence_output = encoder_outputs[0]
|
82 |
+
sequence_output = sequence_output[:, 1:, :].mean(dim=1)
|
83 |
+
|
84 |
+
sequence_output = self.layernorm(sequence_output)
|
85 |
+
pooled_output = (
|
86 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
87 |
+
)
|
88 |
+
|
89 |
+
if not return_dict:
|
90 |
+
head_outputs = (
|
91 |
+
(sequence_output, pooled_output)
|
92 |
+
if pooled_output is not None
|
93 |
+
else (sequence_output,)
|
94 |
+
)
|
95 |
+
return head_outputs + encoder_outputs[1:]
|
96 |
+
|
97 |
+
return BaseModelOutputWithPooling(
|
98 |
+
last_hidden_state=sequence_output,
|
99 |
+
pooler_output=pooled_output,
|
100 |
+
hidden_states=encoder_outputs.hidden_states,
|
101 |
+
attentions=encoder_outputs.attentions,
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
class CustomViTForImageClassification(ViTForImageClassification):
|
106 |
+
def __init__(self, config: ViTConfig) -> None:
|
107 |
+
super().__init__(config)
|
108 |
+
|
109 |
+
self.num_labels = config.num_labels
|
110 |
+
self.vit = CustomViTModel(config, add_pooling_layer=False)
|
111 |
+
|
112 |
+
# Classifier head
|
113 |
+
self.classifier = (
|
114 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
115 |
+
if config.num_labels > 0
|
116 |
+
else nn.Identity()
|
117 |
+
)
|
118 |
+
|
119 |
+
# Initialize weights and apply final processing
|
120 |
+
self.post_init()
|
121 |
+
|
122 |
+
def forward(
|
123 |
+
self,
|
124 |
+
pixel_values: Optional[torch.Tensor] = None,
|
125 |
+
head_mask: Optional[torch.Tensor] = None,
|
126 |
+
labels: Optional[torch.Tensor] = None,
|
127 |
+
output_attentions: Optional[bool] = None,
|
128 |
+
output_hidden_states: Optional[bool] = None,
|
129 |
+
interpolate_pos_encoding: Optional[bool] = None,
|
130 |
+
return_dict: Optional[bool] = None,
|
131 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
132 |
+
r"""
|
133 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
134 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
135 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
136 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
137 |
+
"""
|
138 |
+
return_dict = (
|
139 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
140 |
+
)
|
141 |
+
|
142 |
+
outputs = self.vit(
|
143 |
+
pixel_values,
|
144 |
+
head_mask=head_mask,
|
145 |
+
output_attentions=output_attentions,
|
146 |
+
output_hidden_states=output_hidden_states,
|
147 |
+
interpolate_pos_encoding=interpolate_pos_encoding,
|
148 |
+
return_dict=return_dict,
|
149 |
+
)
|
150 |
+
|
151 |
+
sequence_output = outputs[0]
|
152 |
+
|
153 |
+
logits = self.classifier(sequence_output)
|
154 |
+
|
155 |
+
loss = None
|
156 |
+
|
157 |
+
return ImageClassifierOutput(
|
158 |
+
loss=loss,
|
159 |
+
logits=logits,
|
160 |
+
hidden_states=outputs.hidden_states,
|
161 |
+
attentions=outputs.attentions,
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
model = CustomViTForImageClassification.from_pretrained("vesteinn/vit-mae-cub")
|
166 |
+
image_processor = AutoImageProcessor.from_pretrained("vesteinn/vit-mae-cub")
|
167 |
+
|
168 |
+
classifier = pipeline(
|
169 |
+
"image-classification", model=model, image_processor=image_processor
|
170 |
+
)
|
171 |
+
```
|