license: gpl-3.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- mim_gold_ner | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
base_model: vesteinn/IceBERT | |
model-index: | |
- name: IceBERT-finetuned-ner | |
results: | |
- task: | |
type: token-classification | |
name: Token Classification | |
dataset: | |
name: mim_gold_ner | |
type: mim_gold_ner | |
args: mim-gold-ner | |
metrics: | |
- type: precision | |
value: 0.8870349771350884 | |
name: Precision | |
- type: recall | |
value: 0.8575696021029992 | |
name: Recall | |
- type: f1 | |
value: 0.8720534629404617 | |
name: F1 | |
- type: accuracy | |
value: 0.9848236357672584 | |
name: Accuracy | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# IceBERT-finetuned-ner | |
This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.0815 | |
- Precision: 0.8870 | |
- Recall: 0.8576 | |
- F1: 0.8721 | |
- Accuracy: 0.9848 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 16 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.0536 | 1.0 | 2904 | 0.0749 | 0.8749 | 0.8426 | 0.8585 | 0.9831 | | |
| 0.0269 | 2.0 | 5808 | 0.0754 | 0.8734 | 0.8471 | 0.8600 | 0.9840 | | |
| 0.0173 | 3.0 | 8712 | 0.0815 | 0.8870 | 0.8576 | 0.8721 | 0.9848 | | |
### Framework versions | |
- Transformers 4.11.0 | |
- Pytorch 1.9.0+cu102 | |
- Datasets 1.12.1 | |
- Tokenizers 0.10.3 | |