venkatesh-thiru commited on
Commit
7f66a0b
1 Parent(s): 670e5e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -3
README.md CHANGED
@@ -1,3 +1,50 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - agriculture
5
+ - remote sensing
6
+ - earth observation
7
+ - landsat
8
+ - sentinel-2
9
+ ---
10
+ ## Model Card for UNet-6depth-Up+Conv: `venkatesh-thiru/s2l8h-UNet-6depth-upsample`
11
+
12
+ ### Model Description
13
+
14
+ The UNet-6depth-upsample model is designed to harmonize Landsat-8 and Sentinel-2 satellite imagery by enhancing the spatial resolution of Landsat-8 images. This model takes in Landsat-8 multispectral images (Bottom of the Atmosphere (L2) Reflectances) and pan-chromatic images (Top of the Atmosphere (L1) Reflectances) and outputs images that match the spectral and spatial qualities of Sentinel-2 data.
15
+
16
+ ### Model Architecture
17
+
18
+ This model is a UNet architecture with 6 depth levels and utilizes upsampling combined with convolutional layers to achieve high-fidelity image enhancement. The depth and convolutional layers are fine-tuned to provide a robust transformation that ensures improved spatial resolution and spectral consistency with Sentinel-2 images.
19
+
20
+ ### Usage
21
+
22
+ ```python
23
+ from transformers import AutoModel
24
+
25
+ # Load the UNet-6depth-Up+Conv model
26
+ model = AutoModel.from_pretrained("venkatesh-thiru/s2l8h-UNet-6depth-upsample", trust_remote_code=True)
27
+
28
+ # Harmonize Landsat-8 images
29
+ l8up = model(l8MS, l8pan)
30
+ ```
31
+
32
+ Where:
33
+
34
+ `l8MS` - Landsat Multispectral images (L2 Reflectances)
35
+
36
+ `l8pan` - Landsat Pan-Chromatic images (L1 Reflectances)
37
+
38
+ ### Applications
39
+ Water quality assessment
40
+ Urban planning
41
+ Climate monitoring
42
+ Disaster response
43
+ Infrastructure oversight
44
+ Agricultural surveillance
45
+
46
+ ### Limitations
47
+ While the model generalizes well to most regions of the world, minor limitations may occur in areas with significantly different spectral characteristics or extreme environmental conditions.
48
+
49
+ ### Reference
50
+ For more details, refer to the publication: 10.1016/j.isprsjprs.2024.04.026